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Abstract 
 

This thesis investigates several methods of optimising molecular dynamics simulations using 

a cutoff radius. The verlet neighbour list technique, combined with a fixed grid to execute 

range searches, is accepted as the most efficient method for performing such simulations, 

however building a list of neighbour atoms within the cutoff radius of each other takes the 

bulk of processor time. Optimising this self-spatial join query problem is critical to improving 

simulation speed, and the primary focus of this thesis. Some proposed techniques, such as 

selective checking of verlet neighbours and using half range searches to execute self-spatial 

join queries, produced good performance improvements. Several other techniques, including 

space-filling curves and use of minimum bounding rectangles, yielded poorer than expected 

results. The thesis also compares and evaluates the traditional cell list, a minimum cell list and 

an atom list technique. It is argued that the atom list is superior. Furthermore, the optimal 

number of cells per side for the fixed grid and optimal verlet radius for the verlet neighbour 

list are also analysed. Simple algorithms for dynamically finding the optimal number of cells 

per side and optimal verlet radius are tested. This thesis is valuable as a guide to 

implementing and optimising molecular dynamics simulations, but also relevant to those 

investigating dynamic self-spatial join queries or range queries in “real world” vector space. 

 

Keywords: Molecular dynamics fluid simulations, fixed grid, cell list, verlet neighbour list, 

spatial join, range search, space-filling curves. 
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1 Introduction 
 

1.1 Background and Motivation 

 

The spatial join query has become a well-known computing problem with numerous 

applications across a broad range of fields including geographic information systems, 

computer graphics, databases, astronomy and bioinformatics [7].  

Self-spatial join: given a set of points, retrieve all unique pairs of points, 

such that the distance between the points is less than or equal to some fixed 

radius rs.  

Some practical examples of this proximity problem and other forms of range search queries in 

vector space include air traffic control, moving wireless devices, computer games, numerous 

types of queries on topological data and various types of particle simulations [25]. 

 

Molecular dynamics simulations, like so many other forms of computer simulation, have 

started to play a valuable role in modern science and now form a broad and significant field of 

research [2, 11, 8]. Without recent high-speed computers, testing theoretical models, 

simulating, visualising and running tests on millions of interacting particles would not be 

possible. There are many forms of molecular dynamics simulations [11]. One of the most 

common of these is a simulation of liquid which involves finding all pairs of particles 

(neighbours) within some cutoff radius, calculating the forces between them, and moving 

them forward a single timestep [2]. This process is repeated over many minute timesteps, and 

results are recorded. The process of finding all neighbours (a self-spatial join query) is 

computationally expensive and such simulations must be run for substantial periods of time to 

obtain meaningful results. This thesis focuses primarily on practical ways to improve the 

processing time of existing techniques for this specific molecular dynamics simulation 

problem. 

 

For testing in this thesis a bulk liquid was simulated using a periodic boundary condition [2]. 

Using a periodic condition all atoms and forces exist inside a fixed box, but can wrap around 

the edges of the box. In addition, a Lennard-Jones pair potential interaction model [11] was 

used to simulate the movement of atoms. The most efficient known techniques to perform this 

type of simulation are the verlet neighbour list [32] and use of a fixed grid data structure to 

execute range searches. In the verlet neighbour list technique, a radius greater than the cutoff 

radius is used to build a neighbours list [2]. Between rebuilds, this neighbour list is updated so 



 
2

as to isolate only those neighbours within the cutoff radius of each other. Furthermore, a fixed 

grid partitions a cubic box containing all atoms into a grid with a fixed number of equal sized 

cells per side and is the optimal structure for proximity problems in a system where particles 

are evenly distributed. This thesis builds on the use of both these techniques. 

 

Although all results and discussion are based on the fixed grid, many of the techniques 

discussed could be applied to other multidimensional access methods, for example grid files 

[23], quad-trees [28] and R-trees [14] which are often used in N-body simulation problems 

and range search problems where the distribution of points or objects is highly skewed. This 

thesis is a useful guide to anyone implementing molecular dynamics simulations; however, it 

should also be useful to readers in any field investigating dynamic range queries in Euclidean 

space. 

 

Furthermore, the practical value of this project can be appreciated within the context of the 

Towards Molecular Structure Kinetics (TOMSK) project coordinated by Dr Dmitry 

Konovalov [19]. The eventual aim of TOMSK is to simulate vast numbers of molecules 

interacting and protein folding. Results from this thesis have been used to code and construct 

an efficient engine layer and set of generic classes [24] which will be used by future students 

in this project. 

 

1.2 Thesis Objective 

 

Obtaining a list of all neighbours each timestep takes the bulk of processor time in molecular 

dynamics simulation and therefore represents a significant problem. The main goal of this 

thesis was to optimise the computation time of executing this dynamic self-spatial join 

problem in main memory. Computation of pair-wise interaction is another process which 

often lends itself to optimisation, but this is dependent on the type of interaction model used, 

and therefore considered outside the scope of this thesis. The objective was instead to propose 

and investigate several innovative techniques to speed up the execution of self-spatial joins 

over a fixed grid and also speed up the process of updating of verlet neighbour lists. The 

success of some well known existing techniques, such as the use of space-filling curves and 

cell lists, was also investigated. The final objective was to analyse the performance of varying 

the verlet radius used to build a verlet neighbour list and number of cells per side in the fixed 

grid, so that algorithms to find optimal values for these could be tested. 
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1.3 Summary of Contribution 

 

The most successful technique this thesis proposes is the half range search technique, 

whereby the neighbours for each atom can be found by searching half the volume necessary 

for an ordinary range search. The thesis also demonstrates that the commonly used cell list, 

whereby each range search encompasses only adjacent cells, is not always the most efficient 

technique and has significant disadvantages over a minimum cell list. Moreover, it is found 

that a cubic atom list is a more intelligent choice, because parameters can be changed 

dynamically with minimal detriment to performance. 

 

The thesis also finds that the verlet neighbour list technique can be improved by selective 

checking of neighbours using the displacement of atoms, and investigates two algorithms to 

find the optimal values of the verlet radius and optimal number of cells per side. Not all 

techniques were as successful. For example, the use of sub-girds and minimum bounding 

rectangles inside cells both had limited success, and in some proposed techniques even 

worsened performance. However, even these findings are helpful, and this thesis and code 

provide a useful guideline for anyone wishing to implement or optimise similar simulation 

problems. 

 

1.4 Thesis Structure 

 

The remainder of this thesis is organised in several chapters. Chapter 2 is a brief literature 

review and outlines the various molecular dynamics simulation methods used in testing. 

Chapter 3 proposes a handful of techniques to optimise spatial joins over a fixed grid. Chapter 

4 briefly describes how tests were designed and implemented. Chapter 5 presents and 

discusses all results, including the testing of all techniques proposed in Chapter 4. Finally, 

Chapter 6 concludes the thesis with suggestions on future research directions and a summary 

of findings. 
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2 Background and Literature Review 
 

This chapter introduces molecular dynamics simulations and some of the most popular known 

models and techniques used to implement these simulations. The sections in this chapter are 

logically ordered such that each builds on preceding sections. Section 2.1 introduces 

molecular dynamics simulations, Sections 2.2 to 2.9 review commonly known algorithms 

used in these simulations, and Sections 2.10 and 2.11 introduce existing concepts that can be 

applied to these simulations. 

 

2.1 Introduction to Molecular Dynamics 

 

Computer simulations of molecular systems will never be able to perfectly model the real 

world. At the atomic level, particles obey complex quantum laws; however there are a number 

of statistical ensembles which closely approximate real particle behaviour using classical 

laws. Molecular dynamics (MD) is a computer simulation technique in which the time 

evolution of interacting atoms is followed by integrating their equations of motion. That is, at 

intervals of some timestep, the forces between all pairs of atoms are calculated and 

accumulated, and then each atom is moved. 

 

In a typical molecular dynamics simulation a number of statistical analysis functions are also 

performed at certain intervals. For instance, temperature, pressure and potential/kinetic energy 

drifts are commonly calculated and recorded after each timestep [2, 11]. This is important, 

because such results, averaged over large timeframes, can be compared to measured results of 

real simulations of liquids, whereas it would be impossible for any real experiment to provide 

detailed information about individual atoms. Calculation of these functions falls outside the 

scope of this thesis and were omitted during all tests. For the purposes of testing, the Lennard-

Jones pair potential model was used to simulate the movement of atoms in a bulk liquid. 

 

2.2 Interaction Model: Lennard-Jones Potential 

 

The Lennard-Jones pair potential model is the most commonly used interaction model in 

molecular dynamics [8], and is described by the following equation: 
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Figure 2.1. Lennard-Jones potential vs. separating distance. 

 

The parameter r represents the distance between the centres of two particles. Figure 2.1 shows 

that if particles are far away from each other the force is negligible. Closer particles have 

weak attraction, but if they get too close they repel with exponentially increasing force. The 

parameters ε (characteristic distance) and σ (characteristic energy) are chosen to fit the 

physical properties of the simulated material/particles, but it is customary to work in a system 

of units where ε=1 and σ=1 [8]. 

 

2.3 Periodic Boundary Condition 

 

Simulating bulk matter is difficult, because most molecular simulations can only handle so 

many thousands, perhaps millions, of molecules. Using these quantities is only enough to 

simulate a small liquid droplet or microcrystal; whereby molecules on surface boundaries 

have fewer neighbours and experience different forces from molecules further inside. 

 
Figure 2.2. Periodic boundary condition. 

 

The periodic boundary condition (PBC) is a method to simulate bulk matter and eliminate 

surface effects. Using PBC, a cubic box is replicated throughout space to form an infinite 

lattice. Forces and moving particles effectively wrap around the boundaries, so that a particle 
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which leaves one face will enter through the opposite face as shown in Figure 2.2.a. There are 

a few variations on PBC [2], and in some experiments (Figure 2.2.c) this condition is removed 

along certain axes [8], but the method illustrated in Figure 2.2.a is the most common, and is 

the method used in this thesis. 

 

Note that if PBC is used, the distance from point i to j along each dimension should be 

defined as the closest distance whereby the distance may or may not wrap around the box 

boundary (Figure 2.2.b). This can be computed as follows: 

⎪
⎩
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⎨

⎧

≤≤−
−<+

>−
=

−=

    boxLendistNoWrapboxLen if                     distNoWrap
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2.4 N-body Solutions 

 

A molecular dynamics simulation is a classic N-body problem. The classical N-body problem 

simulates the evolution of a system of N bodies, whereby force is exerted on each body due to 

its interaction with all the other bodies in the system [5]. N-body problems are quite 

specialised, and many papers propose quite specialised algorithms to solve such problems. To 

compare all particles to all other particles (the brute force approach) is not scalable. However 

if a set of nearby particles is far enough away from an individual particle, the set can be 

treated as a single particle with a composite mass, at the centre of the array. This principle 

gave birth to a number of solutions based on specialised data structures which approximate 

long range forces. The O(N log N) Barnes-Hut algorithm [3], is possibly the simplest of these, 

and uses a quad-tree structure, as does the O(N) Fast Multipole Method (FMM) [13] and 

Parallel Multipole Tree Algorithm (PMTA) [5]. Other solutions, such as the O(N log N) 

Particle Mesh Ewald (PME) algorithm and the O(N) Multigrid Summation technique (MG), 

are based on grid structures. 

 

Although these approaches are suitable for star simulations, molecules exhibit strong 

directional forces, and there is no easy way to approximate these. Instead, the typical 

approach used in molecular simulations is to choose a cutoff radius (rc) beyond which forces 

are considered negligible and ignored. Each timestep, all pairs of particles (neighbours) within 

this radius must be determined. Searching a given radius from a single point is called a range 

query; more specifically, this problem is a moving self-spatial join query [26]. 
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2.5 Spatial Data Structures: Fixed Grid 

 

Building a list of neighbours quickly is of critical importance, because it usually forms a 

bottle-neck in the processing time of a molecular dynamics simulation [11]. To determine 

which atoms are in range without resorting to a brute force, objects must be sorted. A spatial 

data structure (also known as an index, spatial access method or multidimensional access 

method), is a structure used to sort data in k dimension space [12]. Many types of spatial data 

structures exist, and most of these are tree-based structures with O(N log N) build times. 

Many papers investigate different types of indexes [16, 4, 12, 6, 31]. However unless the 

dataset is extremely skewed, the best performing structure is the fixed grid, the simplest of all 

structures, which builds in O(N) [17]. In a liquid, particles are evenly distributed, and the 

number of particles is fixed throughout the simulation, so a fixed grid is ideal. 

 

The fixed grid, not to be confused with the grid file [18, 23], has a fixed number of equal 

sized cells along each axis, as shown in Figure 2.3. Unlike other structures, the cell which 

contains an atom can be determined in constant time by dividing the atom’s position by the 

cell length along each dimension. A fixed grid is typically stored as an array of cells, where 

each cell contains a pointer to the list of atoms it contains. 

 

 
Figure 2.3. Fixed grid showing range search. 

 

2.6 Atom List 

 

To perform a range search, all atoms in a cell within rc of the root atoms, are candidate 

neighbours. In Figure 2.3, only the shaded cells need to be searched, although often this list is 

approximated to a rectangular region (i.e.: the top right cell will be included). 

 

Fully covered cell 

Cutoff 
radius 
(rc) 

Fixed grid with 5 cells per side 
cell length 

box length 

rc 

Cutoff sphere 

Partly covered cell 

Boundary of cubic 
atom list (in red) 
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Definition 1. Let cubic atom list refer to a list of all cells within plus and minus rc of a given 

atom along each dimension. 

Definition 2. Let minimum atom list refer to a cubic atom list whereby all cells outside rc are 

removed. 

 

Notice that, a cubic atom list will not always be symmetrical about the root cell (the cell 

which the atom resides in). Also notice that some cells are fully covered while others are only 

partly covered. A disadvantage of atom lists is they involve determining which cells are in 

range of each atom, and this must be done every iteration. For this reason, the cell list was 

created. 

 

2.7 Cell List 

 

The cell list is a commonly used technique in molecular dynamics and builds on the fixed grid 

data structure [2]. In this technique, a fixed grid is set up such that the size of each cubic cell 

side is slightly larger or equal to the cutoff radius rc (Figure 2.4). Each particle in a given cell 

therefore only interacts with particles in neighbouring cells. The same list of neighbouring 

cells is used as a candidate list for each particle in the same cell, but the disadvantage is that a 

high proportion of candidate particles will be rejected. 

 
Figure 2.4. Cell list. 

 

2.8 Verlet Neighbours List 

 

The most effective and commonly used time integration algorithm in molecular dynamics is 

the verlet neighbour list [2]. In this technique the cutoff sphere (with radius rc) around each 

molecule is surrounded by a larger sphere, called a “skin” with radius rv. During the first 

timestep a large neighbours list is constructed, containing all pairs of neighbours within rv of 

each other, and this list is rebuilt at intervals. Between these intervals, the neighbours list is 

simply updated by recalculating distances between neighbours and determining which are 

within the actual cutoff radius rc. Rebuild intervals of 10-20 timesteps are common [2]. The 

rc 

rc 
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algorithm is successful because the skin is chosen to be thick enough that no molecule can 

penetrate through the skin and into the cutoff sphere between these intervals. For instance, in 

Figure 2.5, point 2 will never be able to get further than the position 2', and penetrate the 

cutoff sphere before the list is rebuilt. 

 
Figure 2.5. Cutoff sphere and skin around an atom. 

 

A refinement of this technique is to store the total displacement for each atom since the last 

rebuild and only rebuild the neighbours list again when the sum of the two largest 

displacements exceeds rv - rc. It has been shown that a typical simulation using this verlet 

scheme requires 16 times less pair distance calculations than a pure cell list technique [15]. 

However, to build the verlet neighbour list itself the cell list technique is commonly used. 

Each rebuild is accomplished by placing all atoms into cells, and using a cell list to determine 

which atoms are within rv (instead of rc) of each other. Between rebuilds it is unnecessary to 

place atoms into cells. This combined technique yields the best performance results [15]. 

 

2.9 Indexing Pair Potentials 

 

 
Figure 2.6. Resolving distances to pre-calculated pair-potential force. 

 

Pair potential force must be calculated on the separating distances between every neighbour 

pair found each timestep. Rather than calculate this every time, a useful technique is to pre-

calculate forces for a large series of distance measurements. Distances can then be indexed to 

an array and an approximated force value resolved. A problem with indexing points at evenly 

Cutoff sphere 
1 

3 

6 rv
2 

2' 

6' 
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4 

4' 
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spaced intervals (i.e.: index = distance between atoms / constant) is this results in poor 

accuracy in regions where the curve changes sharply (Figure 2.6.a). A better index resolution 

strategy would have points (representing pre-calculated distances) closer together near the 

origin, where the curve changes sharply, and much fewer points toward the cutoff radius. 

Figure 2.6.b. demonstrates what the effective distribution of points might look like if a 

logarithmic function was used to resolve distances to the index, resulting in many more points 

near the origin. It has been demonstrated that using approximate non-linear sampling of the 

separation distance, only 440 points are needed to create an accurate molecular dynamics 

simulation [9]. The disadvantage is that logarithmic functions can be expensive (Figure 7.3 in 

Appendix B), although this too can be determined using a lookup table.1 

 

2.10 Improving Spatial Locality with Space-Filling Curves 

 

The algorithm used to build the neighbour list, like most spatial algorithms, will typically 

require processing of all points in any given cell at a time, and then points in nearby cells in 

sequence. If the actual array which contains the locations of points is unsorted, it is likely that 

two nearby points within the same cell will be far apart in memory and accessing one after the 

other will result in a processor cache miss. 

Spatial locality principle: It is probable that objects close to referred ones will 

be requested again in the future. 

 

To improve spatial locality, an obvious step is to group points in cells together, but main 

memory performance can be even further improved by sorting points and/or cells using a 

space-filling curve. A space-filling curve is a line passing once through every point in a space, 

in some order, according to some algorithm. All techniques first partition the universe, in this 

case the box, into a grid and then assign an order to all cells. The points in the given data set 

are then sorted and indexed according to the grid cell in which they are contained. 

 

 
Figure 2.7. Space-filling curves. 

                                                      
1 The accuracy and performance of these methods were not tested, since the focus of this 

thesis was only to improve dynamic self-spatial joins. 

(a) Row-wise (b) Row-prime order (c) Hilbert curve (d) Gray curve (e) Z-ordering 
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Figure 2.7 illustrates five common space-filling curves: row-wise ordering (which may occur 

along any dimension), row-prime ordering (a slight improvement), z-ordering (also known as 

the Peano curve or quad codes), the Hilbert curve and the Gray curve. A good overview of 

space-filling curves, is provided in [29], and references to algorithms are provided in [12]. All 

space-filling curves can be applied to any number of dimensions. Studies show that the 

Hilbert curve and z-ordering (which is simpler, but slightly less efficient) are the most 

effective methods [1, 22]. 

 

Space-filling curves lend themselves well to fixed grids. However, a characteristic of space-

filling curves in moving point environments is that, if points (or atoms in this case) are only 

ordered once, performance degrades as points move away from their original positions [17]. 

To prevent this, the points are often re-ordered periodically. Results of using space-filling 

curves in this thesis are investigated in Section 5.12. 

 

2.11 Spatial Data Structures for Skewed Data 

 

Exploring the skewed data set is outside the scope of this thesis; however an important 

disadvantage of the simple fixed grid is that it does not deal well with “dead space” – large 

regions of space with no points. Figure 2.8 shows the use of a fixed grid for a uniform and 

skewed set of points. In order to optimise performance and prevent too many atoms falling in 

a single cell, the number of cells per side in a skewed distribution will be greater than that for 

a uniform distribution with the same number of points. In Figure 2.8.b, the number of cells 

per side has been doubled for the skewed distribution. However, even with four times as 

many cells, certain cells still contain numerous points, which will slow down processing 

every time that cell is found in range of an atom. More importantly, most cells are completely 

empty, and therefore represent wasted data storage. 

 

 
Figure 2.8. Fixed grid for skewed and uniform particle distribution. 

 

Each cell 
contains 
approximately 
the same 
number of 
atoms. 

(a) Uniform distribution. (b) Skewed distribution. 

Most cells are 
empty, while 
some are 
overcrowded 



 
12

Definition 3. A minimum bounding rectangle (MBR) is the smallest rectangle completely 

enclosing a set of points and whose sides are parallel to the coordinate axes. MBRs are 

typically represented by two points, the lowest point (minimum edge along each dimension) 

and the highest (maximum edge along each dimension). 

 

Unlike the fixed grid, most tree-based structures, including kd-trees [10] and quad-trees [28], 

greatly minimise wasted storage of dead space. For the simulation of extremely skewed data, 

such as a galaxy of stars, the R-tree is particularly effective [14]. The R-tree is a balanced tree 

whereby each subtree groups nearby objects together inside a minimum bounding rectangle 

(MBR), as shown in Figure 2.9. In liquid, however, particle distribution is uniform; therefore 

MBRs occupy larger volumes. Furthermore, hierarchical data structures are much more 

expensive to rebuild each timestep than a fixed grid. 

 
Figure 2.9. R-tree for skewed and uniform particle distribution. 

 

Notably, it has been discovered that, even for highly skewed data, a fixed grid performs 

orders of magnitude better than hierarchical data structures including the R-tree, R*-tree and 

quad-tree for the simulation of moving points in two dimensions [17]. Furthermore, a special 

variation of the fixed grid called a “two-tier grid”, which is similar to a quad-tree, has been 

designed to better deal with highly skewed data [17]. 

 

2.12 Summary 

 

In this chapter, an overview of molecular dynamics was provided, including the popular 

Lennard-Jones potential pair algorithm, periodic boundary condition and the use of a fixed 

grid to perform range searches. Two methods to execute range searches over a fixed grid, the 

traditional cell list and an “atom list”, were also introduced, as was the verlet neighbour list 

technique. Furthermore, this chapter reviewed several popular space-filling curves and 

concepts related to a skewed distribution of points.  

(a) Uniform distribution. (b) Skewed distribution. 

Root node 

Level 1 node 
Level 2 node 

Region of 
empty space Points are 

grouped into 
MBRs, and 
hierarchy is 
built 
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3 Proposed Techniques to Improve Self-Spatial Joins 
 

In this chapter, several new optimisation techniques for spatial join queries on a fixed grid are 

proposed and explained. Note that the performance result of each technique appears under the 

corresponding sub-heading in Chapter 5. A fundamental approach to increasing query speed 

is to reduce the search space, which is what many of these techniques attempt to achieve. 

Immediately following are the definitions of some important values used throughout the rest 

of the thesis. 

 

Definition 4. Let rs be defined as the search radius rs used to find neighbour pairs. Note that 

this value of rs will depend on whether the verlet technique is used (Section 2.8) as follows: 

⎩
⎨
⎧

=
ot usednique is nerlet tech ,    if vr
sed      nique is uerlet tech ,    if vr

  r
c

v
s  

 

Definition 5. Let cellSidesPerRs be defined as the side length of a single cell in the fixed grid 

divided by the search radius rs as follows: 

sr
 sidecell of length  erRscellSidesP =  

 

Definition 6. Let cellListSpan be the number of cells which a cell list will span in each 

direction, as given by:  

⎡ ⎤ 1erRscellSidesP 2an cellListSp +×=  

 

Definition 7. Any atom checked against another atom (to check if it is within rc and therefore 

a neighbour) will be called a candidate neighbour, and the fraction of candidates in range, 

denoted by fractCandidatesInRange, will be given by: 

 
med per atolls searchaverage cevolume of 

erecutoff sphvolume of 

 
s neighbour candidatetotal # of

s in range neighbour candidatetotal # of ge datesInRanfractCandi

≈

=
 

 
Figure 3.1. Example of cell list illustrating definitions 5-7. 

cellLen 
rs 

cellListSpan (in cells) 

rs = rc = 5 
cellLength = 2 
 
cellSidesPerRs = 5/2 = 1.5 
cellListSpan = 2×⎡1.5⎤+1 = 5 cells 
fractCandidatesInRange ≈ 4/3π×1.53 / 53 = 11% 
                    (assuming cubic cell list used) 
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3.1 Minimum Cell List 

 

The original cell list technique (Section 2.7) proposes choosing a cell length ≤ rc. This 

effectively means executing each range search over a cube with a volume of at least 33×rc, 

which is 6.45 times the volume of the cutoff sphere (4/3π×rc
3) when rc = cell length. On 

average, only 15.5% of candidates will be in range. A way to improve on this is to make a 

finer grid by choosing a cell length greater than rc. The cell list will now span more than 3 

cells along each dimension (Definition 6). 

 

A cell list spanning more than three cells can be refined to eliminate any cells beyond rc of the 

root cell; this effectively describes a box with rounded edges, as illustrated in Figure 3.2. To 

avoid confusion with the original cell list, this technique will be called a minimum cell list, 

and a cell list which has not been refined will be called a cubic cell list. 

 

Definition 8. Let cubic cell list denote a traditional cell list which includes all cells within 

plus and minus rs of a root cell along each dimension. 

 

Definition 9. Let minimum cell list denote a cubic cell list which has been refined to exclude 

any cells further than rs from the root cell. 

 

Notice that the difference in volume between the minimum cell list and cutoff sphere reduces 

as the grid becomes finer. Whereas a circle occupies 78% of the area of its bounding square, a 

sphere only occupies 52% of the volume of its bounding cube. Generation of a minimum cell 

list only needs to occur once at the start of each simulation (or each time rc changes relative to 

the cell length), and the same single list can be used like a template for each range search 

from any cell. Results of using a minimum cell list as opposed to a cubic cell list technique 

are investigated in Section 5.4. 

 

 
Figure 3.2. Minimum cell list. 

q 
q

Shape of minimum 
cell list resembles 
box with rounded 
edges. 

Jagged shape 
becomes more like 
a sphere as rc 
spans more cells. 
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3.2 Half Range Searches 

 

Often it may be desired to store a list of neighbours of each atom separately, but in molecular 

dynamics simulations it is more efficient to find/store a single exhaustive list of all unique 

neighbour pairs. A problem with the original cell list is that each pair is captured twice; 

making it necessary to check for duplicates. In Figure 3.3.a, point j will be captured when 

searching from point i, and point i will be captured when considering point j. 

 

The proposed solution is to restrict range searches so that all points on a chosen side of a 

chosen axis are ignored, thereby only searching one half of the cutoff sphere. This technique 

will be called half range search and half range searches can be used to resolve self-spatial 

join queries, since the radius of each range search is the same. 

 

Definition 10. Let half range search denote a range search which excludes a chosen side of a 

chosen dimension. In the case of three dimensions, only a hemisphere is searched. 

 

So now, instead of generating a perfectly symmetrical minimum cell list, all cells above or 

below the root cell, along one chosen axis, can be safely eliminated. Figure 3.3.b shows a half 

range search whereby only the upper hemisphere is searched. When considering j, the lower 

point i can be ignored, since it will obviously be captured when considering i to j. 

 

Definition 11. Let half minimum cell list denote a minimum cell list (Definition 9) designed 

to execute half range searches (Definition 10) by excluding all cells above or below the root 

cell along a chosen axis. 
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Figure 3.3. Use of full range search vs. half range search. 

 

Note that the axis which is “halved” should be chosen carefully to improve spatial locality. 

For instance, the code used in testing [24] stored the master cell array as a one-dimensional 

vector such that the cell at location (x, y, z) maps to the element at index (x×cellsPerSide2 + 

y×cellsPerSide + z). By halving along the x-axis instead of the y or z axis, each half range 

search will be spread across a smaller, more contiguous, range in memory. Results of using 

half ranges searches versus full range searches are investigated in Section 5.7. 

 

3.3 Early Elimination of Non-Neighbours 

 

For any given search, even one with a high value of cellSidesPerRs (Figure 5.7), the fraction 

of candidates in range (Definition 7) is usually low. Normally, to check the distance between 

points2, the programmer would simply calculate: 

222 )()()(},{ zzyyxx ijijijjidist −+−+−= . 

To reduce the cost of “neighbour misses”, the programmer should first discard any candidate 

pair where j is above i according to half range search criteria (i.e. if jy>iy), using some 

                                                      
2 For the sake of simplicity all distances are represented as jy – iy. Notice however, that if 

periodic boundary condition is used (as it was in this thesis) distances along each dimension 

are determined by first checking if they wraps around the box boundary (Section 2.3). 

{ (-2,0), (-1,0), (0,0), (1,0), (2,0), 
   (-2,1), (-1,1), (0,1), (1,1), (2,1), 
              (-1,2), (0,2), (1,2) } 

Representation: 
         {   (-1,-2), (0,-2),  (1,-2) 
 (-2,-1),  (-1,-1), (0,-1), (1,-1),  (2,-1), 
 (-2,0),   (-1,0),   (0,0),  (1,0),   (2,0), 
   (-2,1), (-1,1),   (0,1),  (1,1),   (2,1), 
              (-1,2),   (0,2),  (1,2) } 

Representation: 
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tiebreaker if jy=iy. Next, the distance along each axis can be calculated and checked against rc 

separately; and the pair discarded immediately if any distance is greater than rc (i.e. if jx-ix > 

rc). The latter step will be referred to as the early elimination. 

 

Definition 12. Let early elimination describe the process of eliminate a candidate pair early 

if the distance along any axis is greater than the cutoff radius, rather than waiting to 

calculate the final distance. 

 

Definition 13. Let fractionAtomsEliminatedEarly denote the fraction of atoms subject to 

early elimination. If a rectangular region of cells is searched, this is given by: 

 searchedcells of volume
)r(2- 1 early eliminated atoms fraction

3
c×

=  

 

For instance, using a full cubic cell list and the common case of cellSidesPerRs=1, the 

fractionAtomsEliminatedEarly is 70% ({2×1})3 / 33), which is considerable, although one 

should note that if a minimum cell list is used, fractionAtomsEliminatedEarly decreases 

quickly as cellSidesPerRs increases, since a minimum cell list cuts out most of the cells 

outside rc. 

 

Finally, the distance squared should be calculated {i.e.: dist2{i,j} = (jx – ix) 2 + (jy – iy) 2 + (jz – 

iz) 2 } and discarded if greater than rc squared (i.e. if dist2  > rc
2). The reason for this is that 

square root operations are expensive (Figure 7.3 in Appendix B) and should be avoided 

wherever possible. Notice that, using the Lennard-Jones equation, it is possible to use the 

distance squared directly and avoid ever calculating the actual distance (Section 2.2). Results 

of using the early elimination of non-neighbours technique are investigated in Section 5.8. 

 

3.4 Sub-grids and Cell List Template Guides 

 

In the half range search shown in Figure 3.4, it is obviously a waste of time to check over the 

points in the shaded adjacent cells. Although they are in range of the root cell, they are not in 

range of the root atom. However, calculating the minimum distance from every atom to every 

adjacent cell can be expensive. The idea of a sub-grid is that every cell in the main grid is 

divided into a smaller sub-grid and, for every range search, the appropriate sub-cell for each 

root atom is determined in constant time. Notice that atoms are stored and sorted in cells, but 

not stored in sub-cells. For each sub-cell, an array is pre-computed before the simulation 

begins, whereby each element corresponds to a cell in the cell list and effectively says true or 
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false: is this adjacent cell in range. For instance, in Figure 3.4 only two of the six adjacent 

cells (33%) are in range of the bottom left sub-cell. 

 
Figure 3.4. Use of sub-grid to refine search. 

 

The reason for using a sub-grid instead of just using a finer main grid is primarily due to 

storage requirements. Although making a grid with 100 cells per side sounds trivial, it means 

storing 1 million (1003) cells. Note that the optimal number of cells per side is much higher if 

points are highly skewed (Section 2.11). Results of using sub-grid cell list template guides are 

investigated in Section 5.9. 

 

3.5 Minimum Bounding Rectangles in Cells 

 

R-trees are a hierarchical spatial data structure built using MBRs (Definition 3). However it 

was realised that the use of MBRs can also be applied to fixed grid. Specifically, a MBR can 

be kept for each cell and updated whenever a point moves within that cell. Figure 3.5 shows 

the use of MBRs in cells for an evenly and skewed distributed set of points. Minimum 

bounding spheres (MBS) could also be kept and used, but these would be more expensive to 

compute [33]. 

 

For each range search (on every atom), there will always be a considerable proportion of cells 

only just tipped/overlapped by the cutoff radius (Figure 3.5.a) – depending on the number of 

cellSidesPerRs. Such cells can be indicated, and for these cells, it is possible to check if the 

distance from the root atom to the MBR is greater than the cutoff radius, in which case the 

exhaustive checking of these atoms could be bypassed. 

 

This method can be combined with the minimum cell list and sub-grid method. One idea is 

that each sub-cell could store a pre-computed array of values, whereby each value 

corresponds to an adjacent cell and indicates what percentage of the cell overlaps the cutoff 

boundaries. All cells below a certain value could have their MBRs checked. 
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However, whether or not this method can produce a timesaving depends on many factors. If 

there are too few particles/points per cell, it will be quicker to check the root atom against 

each of these particles, rather than their MBR. The other factors are the fraction of cells just 

tipped, and the number of these with MBRs out of range. Furthermore, if the points have a 

skewed distribution, MBR are likely to be smaller (on average). In liquid, where particle 

distribution is very even, each MBR is likely to occupy a large volume of each cell, 

depending on the number of atoms per cell. Results of using MBRs in cells are investigated in 

Section 5.10. 

 

 
Figure 3.5 The use of MBR in grid cells for two different data sets. 

 

3.6 Selective Checking of Verlet Neighbours 

 

The verlet neighbour list (Section 2.8) is effective, because the cost of updating a list is much 

cheaper than rebuilding it. To reduce the cost of updating the neighbour list further, this thesis 

proposes two methods. Firstly, it was thought that, rather than check displacement of all 

atoms every timestep, a more efficient algorithm could measure the number of iterations 

between rebuilds, and only check displacements at sensible intervals, which would decrease 

towards once per iteration as the sum of the two largest displacements approaches rv - rc 

(Section 2.8). For example, if it takes twenty iterations before a rebuild is needed, chances are 

it will take about twenty iterations before the next rebuild. Instead of checking every timestep, 

the algorithm might check after the tenth iteration, and depending on the maximum 

displacements, might decide that it is safe to delay the next check for another four timesteps. 

 

Moreover, a similar approach could be used to avoid checking neighbours which are within 

the verlet shell radius rv, but not within rc of each other, every timestep. In Figure 2.5 for 

example, atom 3 is just within rv of atom 1, and will presumably take several timesteps before 

(a) Even point distribution. (b) Skewed point distribution. 

Notice the 
cutoff radius 
only just 
overlaps many 
cells, but in 
these cases does 
not overlap the 
MBRs. 

For a skewed 
distribution, 
even highly 
populated 
MBRs may 
have a 
relatively small 
volume. 
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it can move within range of rc. This technique could be successful because the number of 

atoms which are within rv but outside rc, can be significant, especially if a large rv is used. 

 

Definition 14. Let fractNeigOutsideRc be the fraction of all neighbours in a verlet list which 

are not within the cutoff radius distance of each other, which can be approximated as: 
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Definition 15. Let safeDist be the minimum distance two atoms must travel before they can 

become in range of each other, as given by: 

cr - atoms between distance  afeDists =  

 

Instead of calculating the distance between all neighbours each timestep, the safeDist can be 

used to determine how long to delay checking the distance between any neighbours outside rc. 

To decide when the distance between these atoms should be checked again a number of 

schemes may be appropriate and two of these are proposed below. 

 

The first scheme may be to record the maximum velocity of any particle in the system each 

timestep, and use this to determine exactly how many iterations to wait before checking the 

distance between those neighbours, as shown in Figure 3.6 and the following equation: 

 timestep)ity (max veloc2 
safeDist rs pair f neighbouxt check o before neiterations

××
=  

 

 
Figure 3.6. Pseudo code for selective checking of neighbours using maximum velocity. 

 

A more sophisticated scheme would be to record the safeDist for each neighbour pair, and 

decrement this each iteration. When the safeDist for any pair becomes less than zero, the 

distance between neighbours would be computed again. Initially it was thought the velocity of 

both atoms in a neighbour pair could be used to decrement the safeDist each timestep, 

however many interaction models also take acceleration into account when moving atoms, or 

may not even want to record velocity at all. For this reason, using the displacement of atoms 

between timesteps is much safer. Each timestep, the displacement of all atoms since the last 

timestep would be calculated and recorded. The verlet neighbour list would then be updated, 

determine max velocity of any atom for this iteration 
For each verlet neighbour: 
 If (iterations before next check > 0): 
  decrement iterations before next check 
 Else: 
  update distance between neighbours  // (expensive step) 
  safeDist = distance between neighbours - rc 
  iterations before next check = safeDist / (2× max velocity × timestep)
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such that any neighbour pair with a safeDist greater than zero would have its safeDist value 

decremented by the sum of the displacement of both atoms since the last timestep. Finally, if 

the safeDist is less than zero, the distance between neighbours and safeDist would be re-

calculated. Figure 3.7 helps illustrate this process using pseudo code. Results of using these 

selective neighbour checking techniques are investigated in Section 5.15. 

 

 
Figure 3.7. Pseudo code for selective checking of neighbours using atom displacement. 

 

 

For each atom: 
 calculate displacement since last timestep 
For each verlet neighbour: 
 If (safeDist > 0): 
  safeDist = safeDist – (displacement first atom + displacement second atom) 
 If (safeDist <= 0): 
  update distance between neighbours  // (expensive step) 
  safeDist = distance between neighbours - rc
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4 Implementation 
 

This chapter gives an overview of how simulations were implemented and results obtained. 

Test code is available at <http://manning.it.jcu.edu.au/~jc130551/thesis/> [24].  

 

4.1 Simulation Testing Sequence 

 

The following is the sequence of main events involved in each simulation. 

 

1. Initial setup: 

1.1. All atoms were placed into a perfect lattice formation, and given slight random 

offsets. 

1.2. All atoms were given random velocities (Appendix D). 

1.3. The vector of cells forming the grid was initialised (using some number of cells per 

side). 

o NOTE: This step often included generation of a minimum cell lists template, 

loading of cell lists and several other setup functions.  

 

2. For each iteration (until the desired number of timesteps had elapsed): 

2.1. A list of all neighbours was compiled. 

o NOTE: This was achieved by placing all atoms into cells then executing a complete 

self-spatial join using rv if verlet was used, or rc if verlet was not used. For a verlet 

update, this step involved checking distance between atoms in the verlet 

neighbours list.  

2.2. Forces between neighbours were calculated and accumulated on each atom using the 

neighbours list. 

o NOTE: Lennard-Jones pair potential was used. 

2.3. Atoms were moved, which included checking if coordinates fell outside the box, in 

which case they were wrapped around. 

2.4. Timestep was incremented. 

 

This is standard procedure for molecular dynamics simulations. Typically, the step of building 

the neighbours list is by far the most time consuming part of a molecular dynamics simulation 

[11]. 

 

http://manning.it.jcu.edu.au/~jc130551/thesis/
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4.2 Scientific Testing Process 

 

All experiments were run on the same computer, a 2.6 GHz Pentium 4 machine with 512 MB 

of RAM and 512kB of L2 cache. The molecular dynamics system tested was implemented as 

a C++ console application written, compiled and executed using Microsoft Visual C++ 6 [30]. 

Each graph of results in Chapter 5 represents a series of simulations, executed in batch. The 

number of timestep/iterations used in different simulations was varied, since simulating over 

fifty thousand atoms could take several minutes per iteration, but simulating five hundred 

took less than a second per iteration. For this reason, a time limit of about one minute was set 

for most simulations, at which point they were terminated, even if the desired number of 

iterations had not completed. Results of the simulations were appended to a CSV file, and 

analysed using Microsoft Excel. 

 

Many metrics and tallies, including the number of distance calculations, were recorded, but 

the main metric of performance presented in results was the average number of CPU tics 

elapsed per iteration. On the test machine each CPU tic was approximately 0.015 of a second 

(approximately 67 tics per second). Since the goal of this thesis was to improve overall 

simulation speed, CPU tics was the most practical metric for comparing different methods. 

However, while the simulation times lead to reasonably accurate estimates of relative speedup 

between competing algorithms, the absolute measure of CPU time is dependent on compiler 

tools, programming language, and the underlying computer hardware used to run simulations. 

Running the same batch of simulations on a machine with different specifications is likely to 

produce different results. For example, the performance improvement of space-filling curves 

(Section 5.12) should be significantly better on a machine with better cache. Furthermore, the 

best implementation techniques on one compiler might not necessarily yield the best results 

on a different compiler. All simulations presented were small enough to fit entirely in 

memory. 

 



 
24

5 Experimental Results and Discussion 
 

In this chapter, the performance results of various techniques and implementation options, 

including all techniques proposed in Chapter 3, are presented. The sections and techniques 

tested are arranged in a logical sequence, such that the most successful techniques discovered 

in one section are generally adopted in all subsequent sections. Most unsuccessful techniques 

were abandoned immediately. Sections 5.2 to 5.13 are focussed on optimising the build time 

for the neighbours list and do not use the verlet neighbour list technique; only Sections 5.14 

and 5.15 use the verlet list technique. The final two sections, Sections 5.16 and 5.17, test 

accuracy relationships specific to a molecular dynamics simulation using the Lennard-Jones 

interaction model. 

 

5.1 Guide to Results 

 

Each graph in this chapter shows the values of the main input parameters used in the 

simulation, hence allowing replication of results. A guide to these variables is provided 

below. Table 1 shows the main input variables defined at the beginning of each simulation, 

Table 2 shows several variables which were useful in analysis of results, and Table 3 shows a 

few of the most important variables calculated at the end of every simulation, many of which 

represent performance metrics. Many of the names for these variables are used throughout the 

rest of the thesis. Appendix A details the properties of the data types shown. In all tests atom 

coordinates and forces are represented as doubles (Appendix C). 

 
Variable Name Description Data Type Comment 

numAtoms Number of atoms used in the 

simulation. 

integer In all simulations atoms were evenly 

distributed; never clustered. 

rc Cutoff radius double 

boxLen Length of the cubic box sides  double 

Cutoff radius was never allowed to exceed 

boxLen/2. 

CPS Cells per side used in the simulation integer Many graphs show how performance varies 

as CPS varies. Other results attempted to find 

an optimal CPS, and then ran the simulation. 

timeStep Duration of each timestep double Notice the effective duration of a simulation 

is equal to timeStep×timeStepsToExe. 

timeStepsToExe Number of timesteps to execute integer Many simulations were ended early if they 

exceeded some time limit. 

useVerlet Shows whether or not verlet 

neighbour list technique was used 

bool 

rv Verlet radius used is above was true double 

Note that only the last few sub-sections of 

results use the verlet list technique. 

Table 1: Main input variables. 
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Variable Name Description Data Type Value Comment 

cellLen Length of each cell side double boxLen/CPS - 

boxVol Volume of the box double boxLen 3 - 

density Density of atoms (number of 

atoms per unit volume) 

double numAtoms/boxVol Often boxLen was set 

such that density would 

stay constant across a set 

of simulations. 

numCells Number of cells in the grid integer CPS 3 - 

avgAtomsPerCell Average number of atoms 

per cell. 

double numAtoms/numCells - 

rs Represents the search radius 

used to build the neighbour 

list, and depends on whether 

the verlet technique is used. 

double if useVerlet is true 

  rs = rc 

else 

  rs = rv 

Helps eliminate 

confusion. 

rvDivRc The verlet radius compared 

to the cutoff radius 

double rc / rv Best way to measure rv 

in results. 

avgLatticeSpacing Distance between adjacent 

atoms if set in a lattice 

structure. 

double numAtoms 1/3 / 

boxLen 

Useful to visualise rough 

separation of atoms. 

cellSidesPerRs Number of cell sides covered 

by rs. 

double cellLen/rs - 

Table 2: Useful derived variables. 

 
Variable Name Description Data Type Comment 

avgTicsPerIt Average number of tics elapsed 

during each iteration. Note that 

every 100 tics took 

approximately 1.5 seconds. 

double The most common metric of performance used in 

this thesis. Does not include setup time, but does 

include building the neighbour list, calculating 

forces and moving atoms etc. 

UavgTicsPerIt Average number of tics for 

each iteration not including 

calculating forces and moving 

atoms. 

double Includes building neighbour lists, and updating 

verlet list if the verlet technique is used. 

avgNeiSize Average size of the neighbours 

list. 

double If verlet neighbour list is used, avgNeiSize will 

typically be greater than the actual average 

number of true neighbours found each iteration. 

avgInRc Average number of neighbour 

pairs within rc found each 

iteration. 

double If verlet technique is not used, this will be equal to 

avgNeiSize. 

avgNeiPerAtom Average number of neighbours 

per atom 

double Is equal to 2×avgInRc/numAtoms, but can be 

estimated/approximated before the simulation by 

(numAtoms-1) ×  {(4/3π×rc
3

 ) / boxVol} 

Table 3: Results and performance measures. 

 



 
26

5.2 Scalability of Fixed Grid 

 

There is a slight misconception in molecular dynamics simulations that performance of any 

even distribution simulation, using a fixed grid, scales linearly with the number of particles. 

Results in Figure 5.1 and Figure 5.2 show this is only true if the density of atoms stays 

constant relative to rc. In Figure 5.2, rc was kept constant, but the box length and number of 

cells per side increases such that the length of each cell and the average number of atoms per 

cell stayed constant. Therefore, in reality, this type of molecular dynamics simulation scales 

O(N) whereby N = numAtoms×(1+avgNeiPerAtom). This relationship is shown in Figure 5.1 

where performance increases roughly proportionally with the volume of the cutoff sphere and 

therefore the average number of neighbours found each iteration. 
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Figure 5.1. Performance when increasing the number of atoms in a fixed size box. 
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Figure 5.2. Performance when keeping atom density and atoms per cell constant. 
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5.3 Breakdown of Costs 

 

The following experiments demonstrate the cost of performing each of the steps involved in a 

single timestep/iteration in the simulation (Section 4.1). Figure 5.3 and Figure 5.4 show the 

same set of results, whereby 10000 atoms were simulated using the Lennard-Jones pair 

potential model using a half atom list technique and a range of cutoff radius values. Varying 

the number of atoms had negligible affect on this performance breakdown, meaning results in 

Figure 5.4 were representative of simulations with any number of atoms. These results show 

that time to build the neighbours list took the bulk of processor time. As rc increases and 

avgNeiPerAtom increases, the proportional cost of placing atoms in cells and repositioning 

atoms reduces. In these simulations, total build time (which includes putting atoms into cells) 

took about 85-90% of the total cost per iteration. Calculating forces, velocity and positions for 

each iteration took the remainder of the time. 

 

Note these results are just a rough guideline; the performance breakdown depends largely on 

the cost per neighbour of the interaction model used, not to mention the cost of and frequency 

of any scientific functions which might be used. In these tests a simple implementation of the 

Lennard-Jones potential algorithm was used to calculate forces, but the performance of this 

could have been significantly improved by implementing techniques described in Section 2.9. 
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Figure 5.3. Various costs of using atom list. 
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Breakdown of costs (using the atom list technique)
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Figure 5.4. Breakdown of costs using atom list. 

 

5.4 Minimum Cell List 

 

The following graphs show the difference in volume (the number of cells) between four 

different types of cell lists outlined in Sections 3.1 and 3.2. The number of cells was 

calculated by a small fragment of code, which first generated the cubic cell lists and then 

eliminated any cell outside of rc to create the corresponding minimum cell list. Figure 5.5 and 

Figure 5.6 show the volume of the minimum cell list increases quite smoothly compared to 

the volume of the cubic cell list. Figure 5.5 shows that the volume of the minimum cell lists 

compared to the volume of the cubic cell lists slowly approaches 52% as cellSidesPerRs 

increases, although the trend is very jagged. The difference is always greatest just after the 

number of cells in the cubic cell list increases. Obviously, refining cubic cell lists into 

minimum cell lists is well worth the effort of coding if cellSidesPerRs is greater than one. 

Figure 5.7 shows the fraction of candidates in range (Definition 7) for each type of cell list. 

Even for high values of cellSidesPerRs, the fraction of candidates not in range is large, thus 

representing a large detriment to performance. 
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Size comparison of different types of cell lists
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Figure 5.5. Number of cells of minimum cell lists vs. cubic cell lists. 
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Figure 5.6. Number of cells in different cell lists. 
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Fraction of candidate neighbours in range for different cell lists
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Figure 5.7. Fraction of candidates in range for cell lists. 

 

5.5 Loaded Cell List vs. Unloaded Cell List 

 

In the following experiment, two methods of implementing minimum cell lists (Definition 9) 

were compared. When considering each cell, the indexes of all other cells in range can be re-

calculated (using a single minimum cell list template) for each iteration, or can be calculated 

and stored for each cell at the start of the simulation before the first iteration. These 

techniques have been labelled as “unloaded min cell list” and “loaded min cell list” 

respectively. Calculating each cell index is not just adding the coordinates of the cell to the 

cell list template value, but also checking if these values wrap around the boundaries. 

 

Test results show a loaded minimum cell list yields much better performance than an 

unloaded implementation. Figure 5.8 shows that storing values can reduce cost per iteration 

significantly – more than halving it for cellSidesPerRs values of four or more. The 

performance saving increases roughly proportional to the number of cells in the cell list itself 

(Figure 5.6).  However, it is worth noting that it often takes a long time to load a cell list and 

it can also occupy a lot of storage space. For each cell, a cell list must be loaded. Figure 5.5 

shows the number of cells in a half minimum cell list. The total number of indexes that must 

be stored in a grid using the loaded cell list technique has a lower bound of CPS3 × (4/3 π 

cellSidesPerRs3) / 2, (if using a half minimum cell list) and therefore does not scale well for 

large simulations where both these values would be high. 
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As an example, if cellSidesPerRs=1 and CPS=11 then only 23,958 (18×113) indexes must be 

stored but if cellSidesPerRs=3.15 and CPS=35 then 9,646,875 (225×353) indexes must be 

stored. These two examples took 31 tics (half a second) and 7985 tics (2 minutes) respectively 

(Figure 5.8). Although initial setup cost is usually not considered in these experiments it 

represents a substantial time penalty (many minutes for larger simulations) and storage 

penalty for loaded cell lists. Furthermore, if during the simulation either rc or the number of 

cells per side were changed, then the cell list would need to be reloaded, and this cost incurred 

again. The inability to easily and dynamically change these values is a significant 

disadvantage of the loaded cell list technique. 
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Figure 5.8. Performance improvement of storing adjacent indexes for each cell. 
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5.6 Atom List vs. Cell List 

 

The following preliminary experiments were intended to show when it is preferable to use an 

atom list (Section 2.6), calculating which cell indexes are in a rectangular range of each atom 

individually, rather than a minimum cell list (Section 3.1). 

 

As expected, results showed that for small values of cellSidesPerRs the half atom list 

performs much better than the half cell list, because only cells within a minimum bounding 

rectangle of each atom itself are considered (Figure 2.3), whereas, a minimum cell list always 

searches at least eighteen cells. All these simulations were run a number of times using a 

range of cell per side values, so that the optimal speed could be determined (Figure 5.9). Due 

to the nature of cell lists, the optimal number of cells per side for a cell list would typically be 

such that the length of cells was some multiple of rc. Atom lists on the other hand exhibited a 

much smoother trend. 

 

Using an optimal number of cells per side for each technique, the loaded cell list usually 

performed better than the atom list. However improvement margins were much less than 

anticipated. In some cases the loaded cell list performed worse; even though the atom list 

requires each cell index to be calculated and searches a cubic area, whilst the cell list searches 

a roughly semi-spherical area. In Figure 5.10, using 50,000 atoms and a cutoff radius about 

10% of the box length, the minimum loaded cell list only produced a performance 

improvement of about 5.2% over the atom list. 

 

Note that the value of rs with respect to the box length is of critical importance. The larger the 

optimal cellSidesPerRs is likely to be, the more the shape of the minimum cell list 

approximates a sphere, and eliminates unnecessary cells (Figure 5.5). The optimal number of 

cells per side and performance difference between using a loaded cell list and atom list also 

fluctuated significantly if rc and the box length remained constant but the number of atoms 

was changed. A more detailed analysis of optimal number of cells per side is provided in 

Section 5.13. 
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Half minimum cell list vs. half atom list
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Figure 5.9. Performance of minimum cell list vs. half cubic atom list. 
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Figure 5.10. Performance of minimum cell list vs. cubic atom list. 
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5.7 Half Range Searches 

 

The following experiments compare the performance of simulations using the half range 

search technique proposed in Section 3.2 to a normal range search technique. Each atom was 

given a unique integer id. For the full range search (using a minimum cell list), candidate 

neighbour atoms were rejected if their id was greater than the atom being considered. For the 

half range search (Definition 10), no cells to the left of the root cell were searched, and 

candidate neighbours atoms were immediately rejected if they had a smaller x coordinate than 

the atom in question. If both atoms had the same x coordinate, atom id was used as a 

tiebreaker; the neighbour atom was rejected if it had a greater atom id. Both techniques 

ensured each neighbour pair was captured only once. 

 

Figure 5.11 shows the performance of a cubic atom list using full range search and half range 

search techniques. In this particular simulation, the half range search clearly outperforms a 

full range search technique – using optimal performance the full list is about 65% slower in 

this case. Notice the full range search attains its best performance with a lower number of 

cells per side than the half range search. This was consistent with most collected results for 

cell lists. As cellSidesPerRs increases so too does the performance difference between full 

and half range search. A higher cellSidesPerRs value means more cells outside of the atom’s 

cell (in every direction) will be captured during each search, and the number of cells captured 

by a full range search will slowly approach double that captured by the half range search. The 

difference in the number of cells between the half and full cell lists dictated improvements 

(Figure 5.6). 

 

Figure 5.12 shows similar results, but using a minimum cell list instead of atom list. 

Improvements of this technique for cell lists proved to be slightly less than improvements for 

the atom list, but still significant – using optimal performance, the full list is about 25% 

slower in this simulation. 
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Full range search vs. half range search for atom list over 
changing CPS
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Figure 5.11. Performance of full and half range search using atom lists. 
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Figure 5.12. Performance of full and half range search using minimum cell lists. 
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5.8 Early Elimination of Non-Neighbours 

 

Figure 5.13 shows performance of using the different early elimination techniques described 

in Section 3.3 using a half minimum cell list. Results show that using early elimination 

(checking the distance between each atom along each axis is less than the cutoff, before 

calculating total distance) gave negligible performance improvements, and in some cases cost 

more. Although it was proved a high fraction of candidate neighbours are subject to early 

elimination, it was not worth the cost of checking for early elimination, implemented in code. 

Avoiding the use of square root gave an efficiency increase of up to approximately 3%. The 

author recommends that the early elimination technique is not worthwhile, especially if using 

a half cell list. However, avoiding square root unless/until required is still recommended. 
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Figure 5.13. Performance improvement of early elimination and using distance squared. 

 

5.9 Sub-grids and Cell List Template Guides 

 

The sub-grid technique described in Section 3.4 was implemented as follows. A half 

minimum cell list template was generated and used to calculate and store the indexes of the 

corresponding adjacent cells of each cell. A “sub-grid template guide” was generated such 

that each sub-cell identified which cells in the cell list template were not in range, using a 

vector of integers (since this is more efficient than using a vector of booleans in C++ [20]). 
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For each half range search, the atom was placed into a sub-cell, and only cells for which the 

matching integer value was true were searched. 

 

Effectiveness of sub-grid over varying search radius
using a half mininum cell list
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Figure 5.14. Sub-grid effectiveness over varying cellSidesPerRs. 

 

Figure 5.14 shows the average fraction of cells in a half minimum cell list which are included 

for randomly placed points. Results for several sub-grids were generated whereby each sub-

grid used a different number of cells per side. These results show that the sub-grid should be 
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most beneficial where the cell length is less than rc; which can often happen in MD 

simulations where the length of the box will not divide evenly into rc. However if rc does 

divide evenly, or almost evenly, into cell length, this approach in unlikely to be effective. 

Using four to six cells per side in the sub-grid appears sensible, since any more than this only 

gives negligible improvement, but will cost exponentially more storage. Note that the amount 

of storage will be at least (number cells in cell list × number of cells per side in the subgrid3) 

booleans. For example, a grid with a cellSidesPerRs value of 4, and 20 cells per side for the 

sub-grid, would require approximately 4 million (514 × 203) integers. 

 

Figure 5.15 illustrates how the sub-grid technique has the effect of smoothing bumps in 

performance of an ordinary loaded cell list when the number of cells in the cell list steps up a 

notch. Figure 5.16 shows that, using a sub-grid with just 4 cells per side can be quite effective 

in these molecular dynamics simulations, but only for systems with over 3 atoms per cell. 

Notice that results are poor when cellSidesPerRs is equal to one (Figure 5.14). 
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Figure 5.15. Sub-grid technique performance. 
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Sub-grid performance 
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Figure 5.16. Sub-grid technique improvements for different numbers of atoms per cell. 

 

This author would recommend experimenting with the sub-grid technique if a cell list is 

already established, there is a high number of atoms per cell and cellSidesPerRs is not ideal 

(Figure 5.14). However, it is later shown that the optimal grid usually has a low number of 

atoms per cell, making it advisable to avoid this idea altogether. This sub-grid approach could 

work well in an application such as a computer game, whereby a fixed master grid is already 

set up, but a series of small range searches with a relatively small fixed radius (eg: less than 

half the cell length) are required. 

 

5.10 Minimum Bounding Rectangles in Cells 

 

Figure 5.17 shows that, for 1000 atoms, using MBRs in each cell was less efficient than using 

minimum atom lists. Although, MBRs would occasionally allow the skipping of a cell which 

was in range of the minimum atom list, the cost of building MBRs for each cell was greater. 
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Performance of variations on atom list
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Figure 5.17. Performance of using MBRs and minimum atom list vs. cubic atom list. 

 

More unexpected, however, was that a cubic atom list performed better than a minimum atom 

list. In a minimum atom list, for each atom searched, each cell in the cubic range is first tested 

to see if it is in range of the atom. The computational savings of using a minimum atom list 

over a cell list can be approximated as follows: 

 

comp savings = {(avgAtomsPerCell × time to check candidate pair × fraction cells eliminated) 

– time to check cell against atom} × numAtoms 

 

Checking a cell is outside of rc of an atom is relatively inexpensive. Nevertheless, if only a 

small proportion of cells in the cubic atom list fall outside rc and there are not many atoms per 

cell, then this cost can outweigh the potential savings. 

 

Figure 5.18 shows the average fraction of cells in a cubic atom list which are omitted in the 

case of a minimum atom list. For cellSidesPerRs=1 this is about 20%. However, since most 

optimal simulations have only between 1 and 2 atoms per cell, it is cheaper to check these 

atoms against the root atom, rather than each cell. Checking the distance between two atoms 

is always cheaper than checking the minimum distance between an atom and a cell or MBR, 

because the latter requires determining which side of the box is closest to the atom along each 

dimension [27]. 
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Figure 5.18. Fraction of cells in cubic atom list skipped when using minimum atom list. 

 

It is reasoned that, if a skewed data set were used, the number of atoms in each cell could be 

used to decide how to process that cell. There would be a large number of atoms in certain 

cells and none in others (Figure 3.5). If the number of atoms in a candidate cell is above some 

threshold, it would be worthwhile to check if that cell was in range of the atom being 

considered, because if the cell is out of range checking all atoms individually could be 

avoided. If the number of atoms in the candidate cell was below the set threshold, checking 

the few atoms individually would work out cheaper. 

 

It should also be mentioned that the self-spatial join algorithm was implemented such that, 

each cell was visited, and the range search executed for each atom in that cell. However, if a 

high proportion of cells are empty, as is the case for skewed distribution, iterating over these 

cells would result in wasted processor time. In this case it may be faster to execute range 

searches for each atom in the order in which it appears in the atom array, despite the fact 

searching atoms in order of cells exhibits better spatial locality. 
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5.11 Improving Spatial Locality: Single Atom Object vs. Separate Position 

Array 

 

An important implementation decision was whether to store location of particles in a separate 

array from other atom attributes. Storing locations separately means more points should fit 

into cache at a time, therefore it seems reasonable that cache hits would improve while 

building neighbours lists. However, results showed that separating the positions resulted in 

worse overall CPU performance (Figure 5.19). Seemingly, the step of moving atoms, which 

involves adjusting each atom’s position based on accumulated force and velocity, would 

result in many cache misses. If molecular dynamics testing functions were added to this 

simulation, this cost would become even greater, because it is likely that a single atom’s 

position and other attributes would be accessed in close succession. Having a single particle 

object, containing (x,y,z) position, velocity, forces and perhaps a few other attributes, is not 

only more object-oriented and easier to code, but exhibits the best spatial locality. 
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Figure 5.19. Result of keeping atom location in a separate array. 
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5.12 Improving Spatial Locality using Space-filling Curves 

 

This section tests the performance of using several of the space-filling curves described in 

Section 2.10. A space-filling curve only needs to be generated once to establish an order for 

the grid cells. Ideally, the number of cells per side is some practical value of 2n, or else the 

pattern of the curve must be broken. Figure 5.20 shows the performance improvements of 

Hilbert curve and Z-order curve compared to random atom distribution. The cost of 

reordering the points is not included in this set of results. For up to 20,000 atoms, the 

improvements were low – compared to a totally random order, Z-order performed 2.32% 

better and Hilbert curve performed 2.45% better on average. 
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Figure 5.20. Ordering atoms using space-filling curves vs. random ordering.  

 

Later tests showed that when using much larger numbers of atoms, more than about 200,000 

atoms, performance improvements gained using space filling curves were dramatic. 

Compared to a random order, Z-order performed almost twice as fast and row ordering 

performed almost as well. It is conjectured that this sizeable difference in performance was 

due to virtual paging in the virtual memory system when simulations became too large to fit 

completely in main memory. Unfortunately, it was also found that, in order to get accurate 

results for these larger atom sets, numerous iterations were required, and to collect a more 

extensive set of data would have taken many days. 
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The above simulations only measure time to build the neighbour list, and do not include the 

time to re-order the atom list using the curve. Furthermore, the velocity of each particle was 

set to almost zero so that atoms were not likely to float out of their original cells during the 

simulation. If the velocity was higher, atoms would move from one cell to the next, and the 

performance improvements would reduce faster because the atoms would quickly become out 

of order again (Section 2.10).  Note that, if a verlet neighbour list was used, rebuilds would 

not occur every iteration. This means particles would move much further between rebuilds of 

the neighbour list (many will have moved by as much as rv – rc/2) therefore performance 

improvements would degrade rapidly. This would make it necessary to re-order the atom list 

very frequently – possibly forcing a rebuild every second rebuild – in order to prevent the 

order of atoms in the atom array degrading back to a random ordering. Determining the best 

moments to reorder points in order to optimise performance is non-trivial, since the re-

ordering itself also bears a cost. Ultimately, the best time to reorder points will depend on the 

velocity and pattern of movement of atoms. One possible method is to establish a threshold 

value such that, when performance falls below this value, the list of atoms is re-ordered. 

 

Two methods of re-ordering the atoms array were tested. The first simply made a temporary 

copy of the entire atom array, and then copied atoms from the temporary copy back into the 

original array, following the order of cells specified by the space-filling curve. The second 

method used much less space, by first determining the order of atoms, and then selectively 

swapping atoms in and out, until the entire array was in order. Results showed the first 

method was almost twice as fast. 

 

The time to re-order atoms scales linearly with the number of atoms. It was initially thought 

this cost would be substantial; but results showed that re-ordering only took approximately 

254 clock tics for 1 million atoms, and approximately 2.2 clock tics to re-order 10,000 atoms; 

negligible compared to the total cost of each iteration. To put this in perspective, in the 

simulation with 10,000 atoms in Figure 5.20, the performance improvement between random 

ordering and Hilbert curve ordering was approximately 50 clock tics (2520 clock tics per 

iteration × 2.45%). Note also that cost of iteration goes up about linearly with the average 

number of neighbours per atom, and this value was only 4 (unrealistically low for MD 

simulations) in the previous experiment. For such a low cost, re-ordering of atoms could be 

done every time the neighbours list is rebuilt, but for a 2-5% performance increase, this author 

believes that it is not worth the extra code and complexity which is required. 
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5.13 Choosing Optimal Cells per Side 

 

One of the most effective ways to optimise the building of neighbour lists is to find the 

optimal number of cells per side in the fixed grid. It was discovered that finding an optimal 

value was deceptively non-trivial, and may vary significantly from one machine or compiler 

to the next. Initially it was thought that setting up the grid such that there would be a certain 

number of atoms per cell would help performance. Figure 5.21 shows results from a batch of 

simulations using a cell list, whereby rc and the box length stayed constant. The optimal 

number of average atoms per cell appears to increase almost linearly as the density of atoms 

increases. 
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Figure 5.21. Optimal atoms per cell for a cell list vs. average atoms per cell. 

 

In the case where a cell list is used, cellSidesPerRs is a crucial value to measure, since it 

dictates the volume of each search. Figure 5.22 shows the same results in Figure 5.21 graphed 

against cellSidesPerRs. As the density of atoms increases, the optimal value of cellSidesPerRs 

shifts from 1 towards 2. 
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Peformance vs. cellSidesPerRs for different numAtoms
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Figure 5.22. Performance costs vs. cellSidesPerRs using cell list. 

 

Using an atom list instead of a cell list yielded much different results. Figure 5.23 shows that 

the optimal number of cells per side for a given simulation for an atom list is much more 

dependent on the number of atoms than the cell list (Figure 5.21).  This shows that by setting 

the number of cells per side so that the average number of atoms per cell is just above one 

achieves a near-optimal value, for each of these simulations. 
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Figure 5.23. Performance vs. average atoms per cell using a cubic atom list. 
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As observed in previous sections, the performance trend for an atom list is much smoother 

than for a cell list, and unlike the cell list, there is no penalty to change the number of cells per 

side dynamically. For this reason, it may be beneficial for long simulations to change the 

number of cells per side until the optimal value is found. 

 

A simple algorithm was proposed to dynamically find the optimal cells per side for any given 

simulation. At the start of the simulation, a decent first estimate of cell per side is set such that 

it obtains (approximately) some default number of atoms per cell. 

⎣ ⎦3 msPerCelldesiredAto numAtoms   de cellsPerSi ÷=  

 

Values of between 1 and 2 atoms per cell worked best in the tested simulations. As the 

simulation executes, the number of clock tics elapsed during each rebuild of the neighbours 

list was recorded. Only the algorithms responsible for placing atoms in cells and generating 

the neighbours list were timed. After each rebuild the performance of the rebuild just 

executed and the rebuild before that were compared, and then the number of cells per side 

was incremented or decremented by one, depending on the result. If an improvement was 

found, the number of cells per side was changed in the same direction as the previous change; 

otherwise, it was changed in the opposite direction. When the number of cells reaches an 

optimal value, the cells per side fluctuates up and back from that value, and when this occurs 

it was assumed that the optimal number of cells per side had been found, and stayed fixed at 

that value for the remainder of the simulation. 

 

This worked well for large simulations, but for simulations with a small total number of 

neighbours per iteration it was found that each rebuild only took a few tics, so accuracy was 

poor. The solution implemented was simply to group together several rebuilds and calculate 

an average number of tics. Rebuilds were only grouped and cells per side changed when the 

total number of tics for rebuilds since the last change exceeded some specified threshold. 
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Performance vs. CPS using cubic atom list
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Figure 5.24. Finding the optimal cells per side using a cubic atom list. 
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Figure 5.25. Optimal number of CPS for varying number of atoms and cutoff radius. 

 

However, even with high accuracy this scheme did not necessarily work perfectly. As 

demonstrated in Figure 5.24, a local maximum and minimum often formed a few increments 

away from the actual minimum, and it is not fully understood why this is. If the algorithm 

were to start on the wrong side of the local maximum and single increments were used, this 

local minimum would be chosen as the optimal cells per side, instead of the actual minimum. 

For this reason, choosing a starting point carefully is important, and it was found that 
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choosing about 1.5 atoms per side and accuracy threshold of several hundred tics, the 

algorithm rarely found an incorrect optimal value. 

 

Figure 5.25 shows the optimal number of cells per side has little dependence on the cutoff 

radius. This set of results was generated using the optimal number of cells per side finding 

algorithm described in this section. As expected, the optimal number of cells per side 

increases roughly logarithmically as the number of atoms increases. 

 

5.14 Choosing Optimal Verlet Radius 

 

A larger verlet radius means atoms must travel a larger distance and therefore a longer time 

before the neighbours list must be rebuilt (Figure 2.5). However, a larger verlet radius also 

means the neighbours list will be longer and therefore each update will require checking more 

neighbours, which is more expensive. Finding the optimal verlet radius is ultimately 

dependent on finding an ideal balance between these two component expenses. In order to test 

the performance of verlet radius, simulations were set up where all atoms had the same 

constant fixed velocity, and the verlet radius was changed. 
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Figure 5.26. Verlet performance with respect to finite number of rebuilds. 

 

Figure 5.26 demonstrates that, whenever a small finite number of iterations occur, even if this 

is as high as 1000, large anomalies can occur in the performance trend. This is due to the fact 

that the same simulation run with two different verlet radii might both undergo the same 

number of neighbour list rebuilds, but one may stop just after a rebuild is executed, and the 

other (with a slightly smaller verlet radius) may stop before a rebuild is needed. Figure 5.26 
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illustrates these relationships. To allow more accurate results to be obtained, one method used 

was to allow a fixed number of rebuilds to occur such that the simulation was stopped just 

after it has been determined that another rebuild was needed. This method allows the average 

number of iterations per rebuild to more accurately reflect results if the simulation were run 

over an infinite timeframe, and therefore was used in many of the following result sets. 
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Figure 5.27. Performance of using different verlet radius. 

 

Figure 5.27 shows that the performance of simulations exhibits a smooth trend as the verlet 

radius is increased. In this simulation the optimal verlet radius is approximately 1.12 times the 

cutoff radius and is over 4 times faster than executing the simulation without using a verlet 

radius. 
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Breakdown of costs for different verlet radius
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Figure 5.28. Performance of using different verlet radius. 

 

Figure 5.28 shows similar results for a simulation with 10000 atoms, and also shows the 

breakdown of total costs per iteration as the verlet radius is increased. As rvDivRc and 

therefore the number of iterations between rebuilds increase linearly, the total number and 

cost of rebuilding decreases rapidly, and the cost of updating the verlet list increases linearly. 

Significantly, the cost of checking atom displacements to check if the verlet list needs 

updating (Section 3.6) is negligible; only 0.6% of the total cost per iteration for the optimal 

verlet radius in the simulation shown. 
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Figure 5.29. Optimal performances for different particle velocities. 
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Figure 5.29 shows how the optimal verlet radius and performance improvements are 

dependent on the maximum velocity of particles each timestep. The faster particles move, the 

worse the optimal performance and greater the optimal verlet radius. 

 

Since the trend of performance against rcDivRc was smooth in all recorded results, a similar 

algorithm to the one described in Section 5.13 was proposed to find the optimal verlet radius 

in any given simulation. At the beginning of the simulation, the initial starting value of rv was 

set to 1.2 times rc, since this appears to be a common choice for a verlet radius [11]. A more 

sophisticated scheme might also take the starting velocities of particles into account. 

 

The number of clock tics elapsed during iteration was recorded, for both rebuilds and verlet 

updates. Prior to each neighbour rebuild, the average tics per iteration starting from the 

previous rebuild was calculated as the number of tics for the previous rebuild plus all 

subsequent verlet updates, divided by the number of iterations this includes. 

 

i.e.:   b ItSinceavgTicsPer
1 ldSinceRebuinumUpdates

pdatesentVerletUForSubsequ totalTics vRebuildticsForPreRe
+

+
=  

 

A history of these times was kept, and the verlet radius was changed up or down depending if 

avgTicsPerItSinceReb for the set of iterations just completed was an improvement on the 

avgTicsPerItSinceReb for the previous set. Each iteration, the verlet radius was changed up or 

down a default increment value of 0.01 times the value of rc. If the performance settled at a 

particular point (determined when rv fluctuates up one then down one from some value) the 

increment value was reduced by half, so that, eventually, a more precise value for the optimal 

verlet radius would be found. 

 

However, most of these fluid simulations are dynamic in nature, and particles often speed up 

or slow down. Often particles start with negligible velocity, and then gradually speed up to 

some state of equilibrium and in other simulations, the user may wish to dynamically heat or 

freeze the particles to see the effects. For this reason, it made sense to not allow rv to settle 

towards or stop at one given point, but instead be allowed to change up and down throughout 

the simulation. There was little investigation into an ideal increment value, but ideally the 

simulation should not fluctuate far enough from the optimal rv to have any significant 

influence on performance, nor should it change so slowly that it cannot respond to changes of 

state within the system. An increment value of 0.01 performed quite well. Figure 5.30 shows 

the performance obtained by using this algorithm over 1400 timesteps, and shows the order in 
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which rvDivRc was changed. Notice that the performance obtained using the algorithm was 

only slightly worse than choosing the optimal rvDivRc value outright. 
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Figure 5.30. Results of simple optimal verlet radius algorithm. 

 

Ideally, this algorithm for finding the optimal verlet radius and the algorithm for finding the 

optimal number of cells per side are complementarity. The use of both algorithms is not tested 

thoroughly enough to present results, but note that the algorithms may affect the effectiveness 

of each other. The optimal verlet radius finding algorithm changes rvDivRc just prior to each 

rebuild, while the optimal cells per side find algorithm measures the performance of the 

rebuild, and changes the number of cells per side after the rebuild. A potential problem with 

this is that the search radius will be changed slightly each rebuild, therefore affecting the size 

of the neighbour list and changing the optimal value for the number of cells per side. This 

conflict could easily cause one to select an incorrect value. Ideally, the two algorithms would 

have awareness of each other and interact intelligently. One simple idea is to let the 

algorithms take turns such that the verlet radius settles at a fixed value, then the number of 

cells per side is adjusted, then the verlet radius adjusts to reflect this, and so on. The author 

believes that anything more sophisticated than this may be unwarranted and only slight 

performance improvements may result. 
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5.15 Selective Checking of Verlet Neighbours 

 

This section reports on the techniques to reduce the cost of checking neighbours proposed in 

Section 3.6. As shown in Figure 5.28 the time to check displacement is small, and ranges 

between about 0.3% and 0.8% of the total cost for most simulations tested during this thesis. 

For this reason, the idea of checking displacement at safe intervals is not worthwhile. 

However, the time to update the verlet list is large; taking 40% of the total cost for the optimal 

simulation in Figure 5.28. Figure 5.31 graphs the fractNeiOutsideRc (Definition 14) for 

different values of rv. These values are considerable, for instance if rv is 1.1 times rc then 25% 

of neighbours are outside rc, and if rv is 1.2 times rc then 42% of neighbours are outside rc. 
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Figure 5.31. Fraction of atoms not in range for different verlet radius. 

 

Figure 5.32 shows performance results for the two techniques for selective checking (Section 

3.6) using the Lennard-Jones interaction model. The average cost of updating the list itself is 

also shown. The performance improvement of the selective checking using maximum velocity 

technique is minimal; but, selective checking using the displacement of individual atoms 

proved quite successful. Most interestingly, this technique reduces the gradient of the cost of 

updating the neighbour list as the verlet radius is increased. For this simulation, the 

performance improvement offered by selective checking using displacement of atoms each 

timestep improved performance by about 7%. 

 



 
55

Performance improvement of selective checking
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Figure 5.32. Performance improvement using selective checking of verlet neighbours. 
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Figure 5.33. Improvements of selective checking at different atom velocities. 
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Optimal performance of selective checking vs. maxVel 
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Figure 5.34. Optimal performance of selective checking of verlet neighbours. 

 

Figure 5.33 shows similar results for three more sets of simulations, each with different 

particle velocities. Notice that the optimal performance of the selective checking of 

neighbours using displacement technique usually has a higher optimal rvDivRc value than the 

normal technique whereby the distance of all neighbours is computed every timestep. This 

relationship is also shown in Figure 5.34, which only graphs the results for the optimal 

performance of each technique for a range of different particle velocities. The average 

performance improvement over all these simulations was 1.8% for the maximum velocity 

checking technique, and 8.3% for the displacement checking technique. Moreover, another 

advantage is that, if non-optimal verlet radius is chosen, the loss in performance is not as great 

if the latter technique is used (Figure 5.33), since the curve increases slower. This author 

would recommend exploring this technique in future implementations of a molecular 

dynamics simulation, especially since it is not complicated to code (Figure 3.7). Note though, 

that improvements are liable to also depend on the size of the atom list compared to the size 

of the neighbour list. 

 

 

5.16 Choosing Cutoff Radius 

 

Choosing an appropriate cutoff radius is an important decision to consider in molecular 

dynamics simulations. The smaller the cutoff radius, the faster the simulation rate, but the 

worse the accuracy of results. Ideally, cutoff radius is large enough that only atoms far 
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enough apart to have only negligible influence on each other are out of range (Figure 2.1). It 

is claimed that 2.5σ and 3.2σ are two most commonly used cutoff radius values, where σ is a 

characteristic distance in pair potential which fits the pair potential curve for a specific 

material [8]. 

 

Figure 5.35 shows the accuracy and performance relationship as cutoff radius is increased. A 

very small timestep was used, so timestep would have negligible affect on accuracy. The 

chosen measure of inaccuracy used in the following experiments was the absolute deviation 

of the position and velocity of all particles, compared to an equivalent control simulation 

using a cutoff radius of 5 units. The experiment and control were run over the same time 

frame and deviations averaged over all particles. 
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Figure 5.35. Performance and accuracy vs. cutoff radius. 
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Performance vs. cutoff sphere volume
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Figure 5.36. Performance-volume relationship 
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Figure 5.37. Accuracy vs. pair potential force. 

 

Notice performance improves by a rate of approximately (4/3 π rc
3), as expected (Figure 

5.36). The rate of error increases exponentially. In each iteration, atoms may only deviate a 

small distance from where they are located in the control experiment, but this affects all future 

force calculations, thus the error compounds quickly. Figure 5.37 shows the rate of error 

graphed against plotted Lennard-Jones pair potential forces. At a radius of about 2.3 the 
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deviation in velocities is no longer negligible, and starts increasing faster, roughly in 

proportion to the changes in attractive force. At the point at which forces start to repel, 

difference in velocity stops because if the simulation was run any longer, the particles would 

get so close to each other they would repel with such a force that the program terminates due 

to arithmetic overflow. It is recommended that a good molecular dynamics simulation 

program should check any cutoff radius specified by the user, calculate the force at that 

distance of separation, and warn the user if that cutoff radius is likely to result in very poor 

results or even a program crash. 

 

5.17 Choosing Timestep 

 

Ideally, timestep is as small as possible. Molecular dynamics is always an approximate 

science where the longer the timestep, the less accurate the results. In the worse case scenario, 

the timestep will allow atoms to move too far between single iterations, allowing atoms to get 

closer together than they ever could in a real liquid. This usually causes an incorrect “chain 

reaction”, whereby two close particles repel at a much faster speed than normal causing them 

to bump even closer other atoms, which are repelled at an even greater velocity. This effect 

compounds until all atom are moving at unrealistic speeds and eventually arithmetic 

overflows will occur. 

 

Performance vs. accuracy using different timestep
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Figure 5.38. Performance and accuracy vs. timestep. 
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In Figure 5.38, several different timestep simulations were run and compared against an 

equivalent control simulation using a small timestep of 0.001. Each simulation is run through 

a fixed timeframe (0.480 seconds). A larger timestep requires fewer iterations and therefore 

the overall performance as total number of tics (not tics per iteration) should improve roughly 

proportional with the increase in timestep; which it does. The results also show increasing 

timestep decreases accuracy roughly linearly, however, at a certain point when the particles 

get too close together, an incorrect chain reaction occurs, and deviations immediately shoot 

towards infinity (which is difficult to depict in the graphs). In practice, it pays to be wary of 

this, and warn or prevent the user from entering a timestep which is too large. Ultimately, 

finding an appropriate balance between performance and accuracy depends on the 

requirements of the simulation. 

 

Figure 5.39 shows how performance degrades over time. A simulation using a timestep of 

0.01 was compared to a control simulation using 0.0001, and deviations compared at constant 

timeframe intervals. The average velocity of all particles in the tested simulation is also 

shown. In the given simulation (Figure 5.39), atoms start off with random velocities, speed up 

slightly (as shown by the blue line), and eventually the fluid reaches a fairly constant state 

whereby atoms are vibrating about, but the total entropy of the system remains about constant. 

Results show that the deviation in total velocities of particles starts off slowly increasing, and 

then increases faster, but eventually this difference in velocity approaches some constant. In 

other words, in the simulation with the larger timestep, particles speed up slightly faster and 

will, on average, remain travelling slightly faster for the whole experiment. Meanwhile, the 

deviation of particles’ positions is also slow to start and shows correlations with the velocity 

trend. Eventually, just after the deviation in velocity settles down, the trend of total position 

deviation appears to become linear, but then the rate of increase reduces slightly. It is 

conjectured that this is due to the fact particles are not travelling as straight at this time, and 

many particles even wobble back over their own paths. 

 

In summary, the choice of timestep has a big impact on accuracy of simulations. It is 

recommended that, to avoid the incorrect “chain reaction” phenomena, if two atoms get 

unrealistically close, the user should be warned that the timestep should be decreased and be 

given the option to terminate the program since the results are already effectively useless. A 

more advanced program might provide warnings if the user enters an unrealistically large 

timestep before the simulation is allowed to start. 
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Degraded accuracy over time
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Figure 5.39. Effect of degrading accuracy over time. 
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6 Conclusion 
 

This chapter presents a summary of results and suggests direction for further work. Many of 

the results provide examples of traditional trade-offs between computation time and storage 

space and also the need for temporal and spatial locality to increase cache effectiveness. 

 

6.1 Summary of Results 

 

In this thesis, several existing and proposed methods for optimising a common molecular 

dynamics problem were evaluated. It was established that building a neighbours list occupied 

the bulk of processor time. Improving the performance of this step was the focus of most of 

this work. Arguably the most significant discovery of this thesis was that half range searches 

yielded significant performance improvements over the traditional full range search 

technique, especially where the search radius spanned a large number of cell sides. The value 

of the cutoff radius divided by the length of the cell side, denoted cellSidesPerRs, proved to 

be a critical value throughout the thesis. 

 

Results demonstrated that loading a minimum cell list was much more effective than re-

calculating adjacent cells each iteration, although the former approach can consume a large 

amount of storage and take a significant amount of time to load at the start of the simulation. 

It was found the loaded cell list technique often performed slightly better than the atom list 

technique. However the atom list technique requires no loading phase and the performance 

when varying the number of cells per side exhibited a much smoother trend. 

 

Several additional optimisation methods were attempted with limited success. A technique for 

early elimination of neighbours was investigated, as was a technique for using integer 

arithmetic instead of floating point arithmetic in construction of neighbour lists, but both 

methods resulted in worse performance. Of the three types of space-filling curves 

investigated, the most effective was the Hilbert curve, although all curves yielded much 

smaller improvements (compared to a completely random ordering of atoms) than expected, 

unless the number of atoms was in the hundreds of thousands. It was also found that using a 

single atom object to contain all atom data exhibited significantly better spatial locality and 

performance than creating a separate array for the position of atoms. 
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A technique of using sub-grids to refine the searching of a loaded cell list proved effective, 

but only if the number of atoms per cell was high, as did a minimum atom list technique and 

the use of minimum bounding rectangles in cells. However, a significant discovery was that 

atom list technique typically performed best when the number of cells per side was adjusted 

so that there were only one or two atoms per cell. For a cell list, the optimal number of cells 

per side was very much dependent on cellSidesPerRs, since this dictated the number of cells 

in the minimum cell list, rather than the average number of atoms per cell. 

 

The author speculates that, a cubic atom list is preferable to a loaded minimum cell list, 

because it is easy to program and allows the dynamic changing of the number of cells per 

side, or even the cutoff radius itself, with minimal affect on performance. The thesis also 

analysed the optimal number of cells per side and proposed an algorithm able to dynamically 

find the optimal number of cells per side for an atom list. This algorithm was found to yield 

close to optimal performance. An almost identical algorithm was proposed to find the optimal 

verlet radius to use in the verlet neighbour list technique. As expected, the verlet list 

technique, yielded significant performance improvement compared to rebuilding each 

iteration, depending on the velocity of particles. Further performance improvements were 

obtained by a new method of selective checking of the neighbours list using the displacement 

of atoms, which significantly reduces the cost of updating the verlet list. 

 

Several of the methods presented could be used in a wide range of applications which execute 

spatial searches, not just molecular dynamics simulations. For those implementing molecular 

dynamic simulations, this author strongly recommends using the half range search technique 

(rather than a full range search) and using an atom list technique (rather than the traditional 

cell list). Using the verlet neighbours technique and the selective checking of the neighbour 

list using atom displacements technique is also advisable. Space-filling curves may also yield 

large improvement, but these improvements are likely small and not worth the effort of the 

extra code and complexity unless simulating vast numbers of particles. Moreover, finding the 

optimal number of cells per side and verlet radius is critical to optimising these simulations, 

so using an algorithm to dynamically find these values (or at least provide a good estimate), 

similar to the algorithms described, is essential. By implementing all these complimentary 

techniques, the performance of any spatial join simulations can be greatly improved, and 

better than halved. Optimisation of this magnitude is surely welcome in large molecular 

dynamics simulations which often take many days to process. 
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6.2 Future Work 

 

The particular molecular dynamics fluid problem investigated is well understood, but there 

remains an opportunity for much future work on detailed analysing of and optimising the 

performance of such simulations. This is important, since similar problems of range searches 

are used in many scientific applications and computer experiments, and scientists are 

constantly trying to increase the number of particles and amount of data in such experiments. 

Due to time constraints, no results for simulations for more than 200 thousand atoms were 

presented, but scientists are naturally interested in making larger simulations with many 

millions of particles. 

 

One of the main foci of future research will be a better analysis of finding the optimal 

parameters for a given simulation, including more advanced means of finding the optimal 

number of cells per side and verlet radius for certain simulations. Some suggestion to extend 

this work are listed below: 

 

o Investigate various algorithms to find the minimum point on the performance curve 

(representing the optimal number of cells per side or verlet radius). As observed, the 

simple algorithms proposed and implemented in this thesis have a high likelihood of 

resolving to a local minimum. 

o Investigate ways to find the optimal verlet radius and number of cells per side 

simultaneously. The two current algorithms are not designed to co-operate in any way, 

and the effectiveness of running both at once has not been properly tested. 

o Investigate the use of Hidden Markov models to determine best number of cells per 

side, given the main input parameters. 

o Experiment with the performance of various techniques in this thesis using different 

compilers and platforms. Currently performance was tested using a single programming 

language and a single machine, so it should be especially interesting to test 

performance differences between different languages. 

o Thoroughly test the performance of space-filling curves for larger numbers of atoms 

travelling at different velocities, with and without using a verlet radius. This author 

believes the curves should yield significant improvements for two-dimensional 

simulations, but had insufficient time to test this theory. Furthermore, if the dataset 

were too large to fit in memory and instead resided on disk, space-filling curves would 

be expected yield huge performance improvements. 

o Testing of the accuracy of various statistical functions for different timestep and cutoff 

radius values. This thesis compared accuracy of simulations by comparing the position 
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and velocity of atoms; but it would be interesting to see performance relationships by 

comparing temperature, energy, and numerous other measurements, since these are the 

important outputs from molecular dynamics simulations. 

o Investigate the usefulness of techniques proposed in this thesis for skewed data sets, 

particularly use of sub-grids minimum bounding rectangles. 

o Investigate the performance of techniques proposed in this thesis using other data 

structures such as R-trees, quad-trees and various types of grid files. 

o Write a more comprehensive guide to the performance benefits of the half range search. 

o Adapt cell lists so that some cells are always searched exhaustively, but certain outer 

cells (or their MBRs) in the adjacent cell list are first checked to determine if they are 

within range of each atom. This technique is more sophisticated than checking every 

cell, and could be implemented by splitting the cell list into two separate lists. However 

this approach is still only likely to yield improvements in simulations with high number 

of atoms per cell, since it is cheaper to compare atoms to each other than calculate the 

minimum distance from an atom to a cell. 

 

This work is most likely to be continued by future students in TOMSK [19], if not by this 

author. 
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7 Appendices 
 

Appendix A: Common C++ Data Types 

 

Table 4 shows some of the most commonly used data types in C++ [21]. The int data type is 

system dependent, but on most systems, including the tested machine, is equivalent to 

__int16. 
Data-type 

name(s) 
Bytes 

Decimal 

digits 
Exponent range Range of Values 

int * * * 
System dependent, but usually 

equivalent to __int16 

__int16 2 5 N/A –32,768 to 32,767 

long 

(__int32) 
4 10 N/A 

–2,147,483,648 to 

2,147,483,647 

__int64 8 19 N/A 
–9,223,372,036,854,775,808 

to 9,223,372,036,854,775,807 

float 4 7 38 to 38 3.4E +/- 38 

double * 8 15 -308 to 308 1.7E +/- 308 

long double 10 19 -4932 to 4932 1.2E +/- 4932 

bool 1 N/A N/A false or true 

Table 4: Relevant C++ data types ranges. 

 

Appendix B: Performance of Various Operations on Chosen Platform 

 

The following results were used to aid implementation decisions during the coding of the 

simulation. Results were obtained by writing a simple testing platform which timed and 

executed a single operation numerous times (500 million or more) in a loop, and compared 

this with a baseline of running the same loop with no operation, in order to obtain a rough 

average number of clock tics for the given operation or method. 

 
 in loopiterationsnumber of 

empty looped during tics elapsopccupied lod during otics elape oner operatiavg tics p −
=  

Results were outputted to a CSV file and analysed in Excel, since this method was found 

easier than using a profiler. Tests were run on the same test computer; 2.6 GHz Pentium 4 

machine with 512 MB of RAM and 512kB of L2 cache; using the default debug configuration 

mode so loops would run exactly as coded. 
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Figure 7.1 shows the speed of basic arithmetic operations for the common C++ data types. 

Results show multiplication, addition and multination is very cheap for long, int and float, but 

more expensive for __int64 and more expensive again for double. Division is expensive for 

all data types, but actually more so for the integer-based data types, presumably because they 

must be converted to floating-point numbers before division occurs. Figure 7.2 shows some of 

the many other operations which were tested. If statements were inexpensive, so too is the 

right shift operation, which is approximately four times less expensive than division using 

doubles, depending on it’s configuration. Right shift only works for integer-based data types. 

Certain typecasting operations, such as converting long to a __int64 were more expensive 

than expected. 

 

Finally, Figure 7.3 shows some common functions from the C++ maths library. The sqrt() 

operation was approximately 64 times more expensive than double multiplication. Results 

also show that using the pow() function is inadvisable if it’s possible to multiply the numbers 

by themselves instead (if trying to obtain the square or cube of a number for instance). 

Interestingly, the fmod() operation, which performs the modulus operation for two floating 

point inputs, was more expensive to call than an equivalent function fMod() written as a 

simple inline function with if statements. Such speedup can easily add up, for example the 

modulus operation was called frequently to put any atoms which had wandered outside the 

box boundaries back into the box. 
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Figure 7.1. Speed of basic arithmetic operations. 
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Speed of various other operations
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Figure 7.2. Speed of other relevant operations. 
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Figure 7.3. Speed of relevant functions. 

 

Appendix C: Choice of Data-type: Double or Long 

 

In the initial code, the doubles were used to store all atom positions, whereby each coordinate 

would be between 0 and boxLen. An alternate idea was to store atom positions as longs, 

whereby each coordinate would be between 0 and some large long value l_boxLen, because 

integer-based arithmetic is characteristically faster than floating point arithmetic (Figure 7.1). 

Division is an expensive operation for all data-types; however the bitwise right shift operation 

(written as “>>”), which only works for integer-based data-types, can be used to divide a 

number by any exponent of two and is much cheaper (Figure 7.2). 

 v>>i ≡ v/2i, where v and i are both integers 
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Indexing an atom to a cell is a frequent operation, and requires the atoms position to be 

divided by the cell length for each axis. If a long is used, the same results can be achieved by 

right shifting the coordinate so that only the bits representing the index position for the cell 

remain. Initially it was thought this technique would limit the values of cell length and cells 

per side which could be used in right shift, however it was discovered that, by carefully 

configuring l_boxLen and using several other parameters, this approach can work for any 

number of cells per side. Table 5 shows how parameters were set up. 
 

Variable Name Value Assigned Data Type Purpose/Description 

BIT_MAX_LONG 32 integer  

maxLong 2BIT_MAX_LONG integer Represents the maximum possible value long can be 

set to (Table 4). 

bitsCPS ⎡ log2 CPS ⎤ integer Represents the minimum number of bits needed to 

represent the CPS. 

rShiftAtomToCell bitsMaxLong – bitsCPS integer Is the number of bits which will be used to represent 

values between 0 and cellLen. By right shifting an 

atom’s position by this amount, only the bits 

representing the cell’s index along that dimension 

will remain. 

l_cellLen 2rShiftAtomToCell long Represents the cell length as a long. 

l_boxLen 2rShiftAtomToCell × CPS long Becomes the total box length as a long. 

longToDouble boxLen/l_boxLen double Used to covert any doubles to longs when needed. ie: 

atomPosDouble = atomPosLong × longToDouble 

doubleToLong l_boxLen/boxLen double Opposite of above. 

Table 5. Parameters used to allow right shift operation. 

 

To establish the cell an atom belongs to can now be done by calling: 
 cellIndexaxis = atomPosLongaxis >> rShiftAtomToCell 
 

This technique was ideal for placing atoms into cells; however, calculating distances was now 

a problem. In order to calculate distance squared, the distance along each axis must be 

squared and all these added together. This is straightforward for floating-point numbers which 

use exponents, but for integer-based numbers, squaring an integer means the number of bits 

required to represent that number is effectively doubled, meaning a long had to be typecast to 

an __int64 (Table 4) in order to safely square its value. Accuracy is an extremely important 

factor in molecular dynamics, and notice in Table 4 that a long only has 10 decimal digits of 

accuracy whereas a double has 15 significant figures.  

 

Using the proposed methods of longs was tested, but although the building of atom lists 

became faster, the cost of comparing distances did not improve, and overall performance was 

about 5% worse in the results collected. A possible method would be to use both doubles and 

integers to store atoms’ positions, to gain the advantage of both data-types, but this would 
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result in further code complexity and storage requirements. The user of a molecular dynamics 

simulation will naturally want any results to be outputted as floating-point numbers, not 

longs, meaning any performance improvements provided by integer-based data types would 

probably be overshadowed by the need to frequently convert one data-type to the other 

(possibly loosing accuracy in the process). The recommendation of this thesis is to keep 

things simple by sticking with doubles or floats if implementing molecular dynamics 

simulations. Possibly for other applications the use of longs as described above would yield 

more substantial advantages. 

 

Appendix D: Efficient Generation of Random Directions in Three-Dimensional 

Space 

 

Generating a random direction for two dimensions is a simple matter of generating a single 

random number between 0 and 180 degrees. However, generating a non-biased random 

direction for three dimensions using angles is more complicated, so the author proposed and 

used a simple approach to solve the problem. A random point in cube was generated by 

generating a random coordinate between -1 and 1 along each axis. This point was then 

checked to see if it was within a distance of 1 from the origin. If so, the vector from the origin 

to the point provided a random direction, if not, the process of generating points would repeat 

until successful. Since a sphere occupies 52% of its bounding cube, about one in every two 

attempts will be successful. This technique was used in the generation of random velocities 

and random position offsets at the start of each simulation. 
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