

Efficient Algorithms for Molecular Dynamics
Simulations and Other Dynamic Spatial Join

Queries

Author:

Andrew Noske

Department of Information Technology

James Cook University, Cairns Campus

andrew.noske@jcu.edu.au

Supervisors:

Dr Dmitry Konovalov

Dr Jason Holdsworth

Dissertation submitted by Andrew Noske in partial fulfilment of the requirements for the

Degree of Bachelor of Information Technology with Honours in the Department of

Information Technology at James Cook University.

Date of submission:

21/11/2004

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another

degree or diploma at any university or other institute of tertiary education. Information

derived from the published and unpublished work of others has been acknowledged in the text

and a list of references is given.

Andrew Noske

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

21/11/2004

Abstract

This thesis investigates several methods of optimising molecular dynamics simulations using

a cutoff radius. The verlet neighbour list technique, combined with a fixed grid to execute

range searches, is accepted as the most efficient method for performing such simulations,

however building a list of neighbour atoms within the cutoff radius of each other takes the

bulk of processor time. Optimising this self-spatial join query problem is critical to improving

simulation speed, and the primary focus of this thesis. Some proposed techniques, such as

selective checking of verlet neighbours and using half range searches to execute self-spatial

join queries, produced good performance improvements. Several other techniques, including

space-filling curves and use of minimum bounding rectangles, yielded poorer than expected

results. The thesis also compares and evaluates the traditional cell list, a minimum cell list and

an atom list technique. It is argued that the atom list is superior. Furthermore, the optimal

number of cells per side for the fixed grid and optimal verlet radius for the verlet neighbour

list are also analysed. Simple algorithms for dynamically finding the optimal number of cells

per side and optimal verlet radius are tested. This thesis is valuable as a guide to

implementing and optimising molecular dynamics simulations, but also relevant to those

investigating dynamic self-spatial join queries or range queries in “real world” vector space.

Keywords: Molecular dynamics fluid simulations, fixed grid, cell list, verlet neighbour list,

spatial join, range search, space-filling curves.

Acknowledgements

Firstly, I would like to thank my two supervisors, Dr. Dmitry Konovalov, who supplied me

with this project idea, and Dr. Jason Holdsworth, who provided helpful reviews of my thesis

and whom few people realise is a brilliant musician/composer. I would also like to extend my

gratitude to Dr. Bruce Litow for scientific reading and writing skills develop through CP5080.

Thanks also to all members of our very friendly School of Information Technology (Dr.

Phillip Musumeci, Dr. Chris Gaskett, Dr. Jason Holdsworth, Dr. Eoin Hyden, Mrs Marion

Hooper and Mr Colin Lemmon) and my fellow honours/MIT students (Eugene McArdle,

Joshua Bennett, Tahawar Durrani and Jon Roberts) for offering helpful critical analysis

during CP5090, and helping us develop a deeper understanding of scientific process. Both

these subjects were invaluable in preparing us for our projects.

I also wish to give thanks to two special friends of mine; Mrs Emmy Kerrigan, who always

offered me encouragement, and our secretary Miss Amber Davison, who somehow managed

to keep me organised all year and (apprehensively) cleared my pay checks. Thank you to all

my friends who have helped make this year memorable. Finally, I would like to thank Dr.

Phillip Musumeci, Dr. Chris Gaskett, Dr. Jason Holdsworth and Susan Barclay for their

helpful review of my thesis. It hasn’t been easy balancing tutoring, subject work and a thesis,

but I’ve had lots of understanding from people. Surely, without that support, waiting all those

hours for simulations to finish running on my machine would have driven me insane.

 i

Table of Contents

1 Introduction... 1
1.1 Background and Motivation... 1
1.2 Thesis Objective ... 2
1.3 Summary of Contribution... 3
1.4 Thesis Structure.. 3

2 Background and Literature Review .. 4
2.1 Introduction to Molecular Dynamics ... 4
2.2 Interaction Model: Lennard-Jones Potential... 4
2.3 Periodic Boundary Condition .. 5
2.4 N-body Solutions .. 6
2.5 Spatial Data Structures: Fixed Grid .. 7
2.6 Atom List .. 7
2.7 Cell List .. 8
2.8 Verlet Neighbours List ... 8
2.9 Indexing Pair Potentials .. 9
2.10 Improving Spatial Locality with Space-Filling Curves.. 10
2.11 Spatial Data Structures for Skewed Data .. 11
2.12 Summary... 12

3 Proposed Techniques to Improve Self-Spatial Joins .. 13
3.1 Minimum Cell List.. 14
3.2 Half Range Searches .. 15
3.3 Early Elimination of Non-Neighbours ... 16
3.4 Sub-grids and Cell List Template Guides .. 17
3.5 Minimum Bounding Rectangles in Cells .. 18
3.6 Selective Checking of Verlet Neighbours ... 19

4 Implementation ... 22
4.1 Simulation Testing Sequence.. 22
4.2 Scientific Testing Process .. 23

5 Experimental Results and Discussion... 24
5.1 Guide to Results ... 24
5.2 Scalability of Fixed Grid.. 26
5.3 Breakdown of Costs ... 27
5.4 Minimum Cell List.. 28
5.5 Loaded Cell List vs. Unloaded Cell List .. 30

 ii

5.6 Atom List vs. Cell List .. 32
5.7 Half Range Searches .. 34
5.8 Early Elimination of Non-Neighbours ... 36
5.9 Sub-grids and Cell List Template Guides .. 36
5.10 Minimum Bounding Rectangles in Cells .. 39
5.11 Improving Spatial Locality: Single Atom Object vs. Separate Position Array 42
5.12 Improving Spatial Locality using Space-filling Curves ... 43
5.13 Choosing Optimal Cells per Side... 45
5.14 Choosing Optimal Verlet Radius ... 49
5.15 Selective Checking of Verlet Neighbours ... 54
5.16 Choosing Cutoff Radius ... 56
5.17 Choosing Timestep... 59

6 Conclusion .. 62
6.1 Summary of Results .. 62
6.2 Future Work ... 64

7 Appendices ... 66
Appendix A: Common C++ Data Types ... 66
Appendix B: Performance of Various Operations on Chosen Platform.............................. 66
Appendix C: Choice of Data-type: Double or Long.. 68
Appendix D: Efficient Generation of Random Directions in Three-Dimensional Space 70

Bibliography.. 71

 iii

List of Figures

Figure 2.1. Lennard-Jones potential vs. separating distance. .. 5
Figure 2.2. Periodic boundary condition. .. 5
Figure 2.3. Fixed grid showing range search... 7
Figure 2.4. Cell list. ... 8
Figure 2.5. Cutoff sphere and skin around an atom... 9
Figure 2.6. Resolving distances to pre-calculated pair-potential force...................................... 9
Figure 2.7. Space-filling curves... 10
Figure 2.8. Fixed grid for skewed and uniform particle distribution....................................... 11
Figure 2.9. R-tree for skewed and uniform particle distribution. .. 12
Figure 3.1. Example of cell list illustrating definitions 5-7... 13
Figure 3.2. Minimum cell list. ... 14
Figure 3.3. Use of full range search vs. half range search... 16
Figure 3.4. Use of sub-grid to refine search. ... 18
Figure 3.5 The use of MBR in grid cells for two different data sets. 19
Figure 3.6. Pseudo code for selective checking of neighbours using maximum velocity. 20
Figure 3.7. Pseudo code for selective checking of neighbours using atom displacement. 21
Figure 5.1. Performance when increasing the number of atoms in a fixed size box. 26
Figure 5.2. Performance when keeping atom density and atoms per cell constant. 26
Figure 5.3. Various costs of using atom list. ... 27
Figure 5.4. Breakdown of costs using atom list. ... 28
Figure 5.5. Number of cells of minimum cell lists vs. cubic cell lists..................................... 29
Figure 5.6. Number of cells in different cell lists. ... 29
Figure 5.7. Fraction of candidates in range for cell lists. .. 30
Figure 5.8. Performance improvement of storing adjacent indexes for each cell. 31
Figure 5.9. Performance of minimum cell list vs. half cubic atom list.................................... 33
Figure 5.10. Performance of minimum cell list vs. cubic atom list. .. 33
Figure 5.11. Performance of full and half range search using atom lists. 35
Figure 5.12. Performance of full and half range search using minimum cell lists. 35
Figure 5.13. Performance improvement of early elimination and using distance squared...... 36
Figure 5.14. Sub-grid effectiveness over varying cellSidesPerRs... 37
Figure 5.15. Sub-grid technique performance. .. 38
Figure 5.16. Sub-grid technique improvements for different numbers of atoms per cell........ 39
Figure 5.17. Performance of using MBRs and minimum atom list vs. cubic atom list........... 40
Figure 5.18. Fraction of cells in cubic atom list skipped when using minimum atom list. 41

 iv

Figure 5.19. Result of keeping atom location in a separate array.. 42
Figure 5.20. Ordering atoms using space-filling curves vs. random ordering......................... 43
Figure 5.21. Optimal atoms per cell for a cell list vs. average atoms per cell. 45
Figure 5.22. Performance costs vs. cellSidesPerRs using cell list... 46
Figure 5.23. Performance vs. average atoms per cell using a cubic atom list. 46
Figure 5.24. Finding the optimal cells per side using a cubic atom list. 48
Figure 5.25. Optimal number of CPS for varying number of atoms and cutoff radius. 48
Figure 5.26. Verlet performance with respect to finite number of rebuilds. 49
Figure 5.27. Performance of using different verlet radius... 50
Figure 5.28. Performance of using different verlet radius... 51
Figure 5.29. Optimal performances for different particle velocities. 51
Figure 5.30. Results of simple optimal verlet radius algorithm. ... 53
Figure 5.31. Fraction of atoms not in range for different verlet radius. 54
Figure 5.32. Performance improvement using selective checking of verlet neighbours. 55
Figure 5.33. Improvements of selective checking at different atom velocities. 55
Figure 5.34. Optimal performance of selective checking of verlet neighbours....................... 56
Figure 5.35. Performance and accuracy vs. cutoff radius.. 57
Figure 5.36. Performance-volume relationship ... 58
Figure 5.37. Accuracy vs. pair potential force. ... 58
Figure 5.38. Performance and accuracy vs. timestep. ... 59
Figure 5.39. Effect of degrading accuracy over time. ... 61
Figure 7.1. Speed of basic arithmetic operations... 67
Figure 7.2. Speed of other relevant operations. ... 68
Figure 7.3. Speed of relevant functions... 68

 v

List of Tables

Table 1: Main input variables.. 24
Table 2: Useful derived variables.. 25
Table 3: Results and performance measures. .. 25
Table 4: Relevant C++ data types ranges. ... 66
Table 5. Parameters used to allow right shift operation. ... 69

List of Definitions

Definition 1. cubic atom list .. 8
Definition 2. minimum atom list .. 8
Definition 3. minimum bounding rectangle (MBR) ... 12
Definition 4. rs ... 13
Definition 5. cellSidesPerRs.. 13
Definition 6. cellListSpan .. 13
Definition 7. fractCandidatesInRange .. 13
Definition 8. cubic cell list .. 14
Definition 9. minimum cell list .. 14
Definition 10. half range search ... 15
Definition 11. half minimum cell list ... 15
Definition 12. early elimination .. 17
Definition 13. fractionAtomsEliminatedEarly... 17
Definition 14. fractNeigOutsideRc .. 20
Definition 15. safeDist... 20

1

1 Introduction

1.1 Background and Motivation

The spatial join query has become a well-known computing problem with numerous

applications across a broad range of fields including geographic information systems,

computer graphics, databases, astronomy and bioinformatics [7].

Self-spatial join: given a set of points, retrieve all unique pairs of points,

such that the distance between the points is less than or equal to some fixed

radius rs.

Some practical examples of this proximity problem and other forms of range search queries in

vector space include air traffic control, moving wireless devices, computer games, numerous

types of queries on topological data and various types of particle simulations [25].

Molecular dynamics simulations, like so many other forms of computer simulation, have

started to play a valuable role in modern science and now form a broad and significant field of

research [2, 11, 8]. Without recent high-speed computers, testing theoretical models,

simulating, visualising and running tests on millions of interacting particles would not be

possible. There are many forms of molecular dynamics simulations [11]. One of the most

common of these is a simulation of liquid which involves finding all pairs of particles

(neighbours) within some cutoff radius, calculating the forces between them, and moving

them forward a single timestep [2]. This process is repeated over many minute timesteps, and

results are recorded. The process of finding all neighbours (a self-spatial join query) is

computationally expensive and such simulations must be run for substantial periods of time to

obtain meaningful results. This thesis focuses primarily on practical ways to improve the

processing time of existing techniques for this specific molecular dynamics simulation

problem.

For testing in this thesis a bulk liquid was simulated using a periodic boundary condition [2].

Using a periodic condition all atoms and forces exist inside a fixed box, but can wrap around

the edges of the box. In addition, a Lennard-Jones pair potential interaction model [11] was

used to simulate the movement of atoms. The most efficient known techniques to perform this

type of simulation are the verlet neighbour list [32] and use of a fixed grid data structure to

execute range searches. In the verlet neighbour list technique, a radius greater than the cutoff

radius is used to build a neighbours list [2]. Between rebuilds, this neighbour list is updated so

2

as to isolate only those neighbours within the cutoff radius of each other. Furthermore, a fixed

grid partitions a cubic box containing all atoms into a grid with a fixed number of equal sized

cells per side and is the optimal structure for proximity problems in a system where particles

are evenly distributed. This thesis builds on the use of both these techniques.

Although all results and discussion are based on the fixed grid, many of the techniques

discussed could be applied to other multidimensional access methods, for example grid files

[23], quad-trees [28] and R-trees [14] which are often used in N-body simulation problems

and range search problems where the distribution of points or objects is highly skewed. This

thesis is a useful guide to anyone implementing molecular dynamics simulations; however, it

should also be useful to readers in any field investigating dynamic range queries in Euclidean

space.

Furthermore, the practical value of this project can be appreciated within the context of the

Towards Molecular Structure Kinetics (TOMSK) project coordinated by Dr Dmitry

Konovalov [19]. The eventual aim of TOMSK is to simulate vast numbers of molecules

interacting and protein folding. Results from this thesis have been used to code and construct

an efficient engine layer and set of generic classes [24] which will be used by future students

in this project.

1.2 Thesis Objective

Obtaining a list of all neighbours each timestep takes the bulk of processor time in molecular

dynamics simulation and therefore represents a significant problem. The main goal of this

thesis was to optimise the computation time of executing this dynamic self-spatial join

problem in main memory. Computation of pair-wise interaction is another process which

often lends itself to optimisation, but this is dependent on the type of interaction model used,

and therefore considered outside the scope of this thesis. The objective was instead to propose

and investigate several innovative techniques to speed up the execution of self-spatial joins

over a fixed grid and also speed up the process of updating of verlet neighbour lists. The

success of some well known existing techniques, such as the use of space-filling curves and

cell lists, was also investigated. The final objective was to analyse the performance of varying

the verlet radius used to build a verlet neighbour list and number of cells per side in the fixed

grid, so that algorithms to find optimal values for these could be tested.

3

1.3 Summary of Contribution

The most successful technique this thesis proposes is the half range search technique,

whereby the neighbours for each atom can be found by searching half the volume necessary

for an ordinary range search. The thesis also demonstrates that the commonly used cell list,

whereby each range search encompasses only adjacent cells, is not always the most efficient

technique and has significant disadvantages over a minimum cell list. Moreover, it is found

that a cubic atom list is a more intelligent choice, because parameters can be changed

dynamically with minimal detriment to performance.

The thesis also finds that the verlet neighbour list technique can be improved by selective

checking of neighbours using the displacement of atoms, and investigates two algorithms to

find the optimal values of the verlet radius and optimal number of cells per side. Not all

techniques were as successful. For example, the use of sub-girds and minimum bounding

rectangles inside cells both had limited success, and in some proposed techniques even

worsened performance. However, even these findings are helpful, and this thesis and code

provide a useful guideline for anyone wishing to implement or optimise similar simulation

problems.

1.4 Thesis Structure

The remainder of this thesis is organised in several chapters. Chapter 2 is a brief literature

review and outlines the various molecular dynamics simulation methods used in testing.

Chapter 3 proposes a handful of techniques to optimise spatial joins over a fixed grid. Chapter

4 briefly describes how tests were designed and implemented. Chapter 5 presents and

discusses all results, including the testing of all techniques proposed in Chapter 4. Finally,

Chapter 6 concludes the thesis with suggestions on future research directions and a summary

of findings.

4

2 Background and Literature Review

This chapter introduces molecular dynamics simulations and some of the most popular known

models and techniques used to implement these simulations. The sections in this chapter are

logically ordered such that each builds on preceding sections. Section 2.1 introduces

molecular dynamics simulations, Sections 2.2 to 2.9 review commonly known algorithms

used in these simulations, and Sections 2.10 and 2.11 introduce existing concepts that can be

applied to these simulations.

2.1 Introduction to Molecular Dynamics

Computer simulations of molecular systems will never be able to perfectly model the real

world. At the atomic level, particles obey complex quantum laws; however there are a number

of statistical ensembles which closely approximate real particle behaviour using classical

laws. Molecular dynamics (MD) is a computer simulation technique in which the time

evolution of interacting atoms is followed by integrating their equations of motion. That is, at

intervals of some timestep, the forces between all pairs of atoms are calculated and

accumulated, and then each atom is moved.

In a typical molecular dynamics simulation a number of statistical analysis functions are also

performed at certain intervals. For instance, temperature, pressure and potential/kinetic energy

drifts are commonly calculated and recorded after each timestep [2, 11]. This is important,

because such results, averaged over large timeframes, can be compared to measured results of

real simulations of liquids, whereas it would be impossible for any real experiment to provide

detailed information about individual atoms. Calculation of these functions falls outside the

scope of this thesis and were omitted during all tests. For the purposes of testing, the Lennard-

Jones pair potential model was used to simulate the movement of atoms in a bulk liquid.

2.2 Interaction Model: Lennard-Jones Potential

The Lennard-Jones pair potential model is the most commonly used interaction model in

molecular dynamics [8], and is described by the following equation:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

612

4)(ø
rr

rLJ
σσ

ε

5

Figure 2.1. Lennard-Jones potential vs. separating distance.

The parameter r represents the distance between the centres of two particles. Figure 2.1 shows

that if particles are far away from each other the force is negligible. Closer particles have

weak attraction, but if they get too close they repel with exponentially increasing force. The

parameters ε (characteristic distance) and σ (characteristic energy) are chosen to fit the

physical properties of the simulated material/particles, but it is customary to work in a system

of units where ε=1 and σ=1 [8].

2.3 Periodic Boundary Condition

Simulating bulk matter is difficult, because most molecular simulations can only handle so

many thousands, perhaps millions, of molecules. Using these quantities is only enough to

simulate a small liquid droplet or microcrystal; whereby molecules on surface boundaries

have fewer neighbours and experience different forces from molecules further inside.

Figure 2.2. Periodic boundary condition.

The periodic boundary condition (PBC) is a method to simulate bulk matter and eliminate

surface effects. Using PBC, a cubic box is replicated throughout space to form an infinite

lattice. Forces and moving particles effectively wrap around the boundaries, so that a particle

 represents van de Walls
dispersion forces.

Repulsive
Component =

r

6

⎟
⎠
⎞

⎜
⎝
⎛−

r
σ

12

⎟
⎠
⎞

⎜
⎝
⎛

r
σ

Potential

 atoms repel when their
electron clouds overlap.

0 r

Attractive
component =

Repulsive force

Attractive force

1

2
5

4

3

1

4

2

3

5

z

x

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

(a) PBC on 2 dimensional box

(c) Reflecting boundary
on z axis

(b) Range search on box
with PBC Note that the distance between

atom 1 and 4 wraps around the
box boundary. The distance
between one and 3 does not.

6

which leaves one face will enter through the opposite face as shown in Figure 2.2.a. There are

a few variations on PBC [2], and in some experiments (Figure 2.2.c) this condition is removed

along certain axes [8], but the method illustrated in Figure 2.2.a is the most common, and is

the method used in this thesis.

Note that if PBC is used, the distance from point i to j along each dimension should be

defined as the closest distance whereby the distance may or may not wrap around the box

boundary (Figure 2.2.b). This can be computed as follows:

⎪
⎩

⎪
⎨

⎧

≤≤−
−<+

>−
=

−=

 boxLendistNoWrapboxLen if distNoWrap
 boxLen distNoWrap if boxLendistNoWrap

 boxLen distNoWrap if boxLendistNoWrap
gPBCdistIfUsin

ijdistNoWrap xx

)2/()2/(,
)2/(,

)2/(,

2.4 N-body Solutions

A molecular dynamics simulation is a classic N-body problem. The classical N-body problem

simulates the evolution of a system of N bodies, whereby force is exerted on each body due to

its interaction with all the other bodies in the system [5]. N-body problems are quite

specialised, and many papers propose quite specialised algorithms to solve such problems. To

compare all particles to all other particles (the brute force approach) is not scalable. However

if a set of nearby particles is far enough away from an individual particle, the set can be

treated as a single particle with a composite mass, at the centre of the array. This principle

gave birth to a number of solutions based on specialised data structures which approximate

long range forces. The O(N log N) Barnes-Hut algorithm [3], is possibly the simplest of these,

and uses a quad-tree structure, as does the O(N) Fast Multipole Method (FMM) [13] and

Parallel Multipole Tree Algorithm (PMTA) [5]. Other solutions, such as the O(N log N)

Particle Mesh Ewald (PME) algorithm and the O(N) Multigrid Summation technique (MG),

are based on grid structures.

Although these approaches are suitable for star simulations, molecules exhibit strong

directional forces, and there is no easy way to approximate these. Instead, the typical

approach used in molecular simulations is to choose a cutoff radius (rc) beyond which forces

are considered negligible and ignored. Each timestep, all pairs of particles (neighbours) within

this radius must be determined. Searching a given radius from a single point is called a range

query; more specifically, this problem is a moving self-spatial join query [26].

7

2.5 Spatial Data Structures: Fixed Grid

Building a list of neighbours quickly is of critical importance, because it usually forms a

bottle-neck in the processing time of a molecular dynamics simulation [11]. To determine

which atoms are in range without resorting to a brute force, objects must be sorted. A spatial

data structure (also known as an index, spatial access method or multidimensional access

method), is a structure used to sort data in k dimension space [12]. Many types of spatial data

structures exist, and most of these are tree-based structures with O(N log N) build times.

Many papers investigate different types of indexes [16, 4, 12, 6, 31]. However unless the

dataset is extremely skewed, the best performing structure is the fixed grid, the simplest of all

structures, which builds in O(N) [17]. In a liquid, particles are evenly distributed, and the

number of particles is fixed throughout the simulation, so a fixed grid is ideal.

The fixed grid, not to be confused with the grid file [18, 23], has a fixed number of equal

sized cells along each axis, as shown in Figure 2.3. Unlike other structures, the cell which

contains an atom can be determined in constant time by dividing the atom’s position by the

cell length along each dimension. A fixed grid is typically stored as an array of cells, where

each cell contains a pointer to the list of atoms it contains.

Figure 2.3. Fixed grid showing range search.

2.6 Atom List

To perform a range search, all atoms in a cell within rc of the root atoms, are candidate

neighbours. In Figure 2.3, only the shaded cells need to be searched, although often this list is

approximated to a rectangular region (i.e.: the top right cell will be included).

Fully covered cell

Cutoff
radius
(rc)

Fixed grid with 5 cells per side
cell length

box length

rc

Cutoff sphere

Partly covered cell

Boundary of cubic
atom list (in red)

8

Definition 1. Let cubic atom list refer to a list of all cells within plus and minus rc of a given

atom along each dimension.

Definition 2. Let minimum atom list refer to a cubic atom list whereby all cells outside rc are

removed.

Notice that, a cubic atom list will not always be symmetrical about the root cell (the cell

which the atom resides in). Also notice that some cells are fully covered while others are only

partly covered. A disadvantage of atom lists is they involve determining which cells are in

range of each atom, and this must be done every iteration. For this reason, the cell list was

created.

2.7 Cell List

The cell list is a commonly used technique in molecular dynamics and builds on the fixed grid

data structure [2]. In this technique, a fixed grid is set up such that the size of each cubic cell

side is slightly larger or equal to the cutoff radius rc (Figure 2.4). Each particle in a given cell

therefore only interacts with particles in neighbouring cells. The same list of neighbouring

cells is used as a candidate list for each particle in the same cell, but the disadvantage is that a

high proportion of candidate particles will be rejected.

Figure 2.4. Cell list.

2.8 Verlet Neighbours List

The most effective and commonly used time integration algorithm in molecular dynamics is

the verlet neighbour list [2]. In this technique the cutoff sphere (with radius rc) around each

molecule is surrounded by a larger sphere, called a “skin” with radius rv. During the first

timestep a large neighbours list is constructed, containing all pairs of neighbours within rv of

each other, and this list is rebuilt at intervals. Between these intervals, the neighbours list is

simply updated by recalculating distances between neighbours and determining which are

within the actual cutoff radius rc. Rebuild intervals of 10-20 timesteps are common [2]. The

rc

rc

9

algorithm is successful because the skin is chosen to be thick enough that no molecule can

penetrate through the skin and into the cutoff sphere between these intervals. For instance, in

Figure 2.5, point 2 will never be able to get further than the position 2', and penetrate the

cutoff sphere before the list is rebuilt.

Figure 2.5. Cutoff sphere and skin around an atom.

A refinement of this technique is to store the total displacement for each atom since the last

rebuild and only rebuild the neighbours list again when the sum of the two largest

displacements exceeds rv - rc. It has been shown that a typical simulation using this verlet

scheme requires 16 times less pair distance calculations than a pure cell list technique [15].

However, to build the verlet neighbour list itself the cell list technique is commonly used.

Each rebuild is accomplished by placing all atoms into cells, and using a cell list to determine

which atoms are within rv (instead of rc) of each other. Between rebuilds it is unnecessary to

place atoms into cells. This combined technique yields the best performance results [15].

2.9 Indexing Pair Potentials

Figure 2.6. Resolving distances to pre-calculated pair-potential force.

Pair potential force must be calculated on the separating distances between every neighbour

pair found each timestep. Rather than calculate this every time, a useful technique is to pre-

calculate forces for a large series of distance measurements. Distances can then be indexed to

an array and an approximated force value resolved. A problem with indexing points at evenly

Cutoff sphere
1

3

6 rv
2

2'

6'

rc

Skin
3'

4

4'

5'
5

Potential

(a) Linear resolution (b) Logarithmic resolution

Separating distance Separating distance

10

spaced intervals (i.e.: index = distance between atoms / constant) is this results in poor

accuracy in regions where the curve changes sharply (Figure 2.6.a). A better index resolution

strategy would have points (representing pre-calculated distances) closer together near the

origin, where the curve changes sharply, and much fewer points toward the cutoff radius.

Figure 2.6.b. demonstrates what the effective distribution of points might look like if a

logarithmic function was used to resolve distances to the index, resulting in many more points

near the origin. It has been demonstrated that using approximate non-linear sampling of the

separation distance, only 440 points are needed to create an accurate molecular dynamics

simulation [9]. The disadvantage is that logarithmic functions can be expensive (Figure 7.3 in

Appendix B), although this too can be determined using a lookup table.1

2.10 Improving Spatial Locality with Space-Filling Curves

The algorithm used to build the neighbour list, like most spatial algorithms, will typically

require processing of all points in any given cell at a time, and then points in nearby cells in

sequence. If the actual array which contains the locations of points is unsorted, it is likely that

two nearby points within the same cell will be far apart in memory and accessing one after the

other will result in a processor cache miss.

Spatial locality principle: It is probable that objects close to referred ones will

be requested again in the future.

To improve spatial locality, an obvious step is to group points in cells together, but main

memory performance can be even further improved by sorting points and/or cells using a

space-filling curve. A space-filling curve is a line passing once through every point in a space,

in some order, according to some algorithm. All techniques first partition the universe, in this

case the box, into a grid and then assign an order to all cells. The points in the given data set

are then sorted and indexed according to the grid cell in which they are contained.

Figure 2.7. Space-filling curves.

1 The accuracy and performance of these methods were not tested, since the focus of this

thesis was only to improve dynamic self-spatial joins.

(a) Row-wise (b) Row-prime order (c) Hilbert curve (d) Gray curve (e) Z-ordering

11

Figure 2.7 illustrates five common space-filling curves: row-wise ordering (which may occur

along any dimension), row-prime ordering (a slight improvement), z-ordering (also known as

the Peano curve or quad codes), the Hilbert curve and the Gray curve. A good overview of

space-filling curves, is provided in [29], and references to algorithms are provided in [12]. All

space-filling curves can be applied to any number of dimensions. Studies show that the

Hilbert curve and z-ordering (which is simpler, but slightly less efficient) are the most

effective methods [1, 22].

Space-filling curves lend themselves well to fixed grids. However, a characteristic of space-

filling curves in moving point environments is that, if points (or atoms in this case) are only

ordered once, performance degrades as points move away from their original positions [17].

To prevent this, the points are often re-ordered periodically. Results of using space-filling

curves in this thesis are investigated in Section 5.12.

2.11 Spatial Data Structures for Skewed Data

Exploring the skewed data set is outside the scope of this thesis; however an important

disadvantage of the simple fixed grid is that it does not deal well with “dead space” – large

regions of space with no points. Figure 2.8 shows the use of a fixed grid for a uniform and

skewed set of points. In order to optimise performance and prevent too many atoms falling in

a single cell, the number of cells per side in a skewed distribution will be greater than that for

a uniform distribution with the same number of points. In Figure 2.8.b, the number of cells

per side has been doubled for the skewed distribution. However, even with four times as

many cells, certain cells still contain numerous points, which will slow down processing

every time that cell is found in range of an atom. More importantly, most cells are completely

empty, and therefore represent wasted data storage.

Figure 2.8. Fixed grid for skewed and uniform particle distribution.

Each cell
contains
approximately
the same
number of
atoms.

(a) Uniform distribution. (b) Skewed distribution.

Most cells are
empty, while
some are
overcrowded

12

Definition 3. A minimum bounding rectangle (MBR) is the smallest rectangle completely

enclosing a set of points and whose sides are parallel to the coordinate axes. MBRs are

typically represented by two points, the lowest point (minimum edge along each dimension)

and the highest (maximum edge along each dimension).

Unlike the fixed grid, most tree-based structures, including kd-trees [10] and quad-trees [28],

greatly minimise wasted storage of dead space. For the simulation of extremely skewed data,

such as a galaxy of stars, the R-tree is particularly effective [14]. The R-tree is a balanced tree

whereby each subtree groups nearby objects together inside a minimum bounding rectangle

(MBR), as shown in Figure 2.9. In liquid, however, particle distribution is uniform; therefore

MBRs occupy larger volumes. Furthermore, hierarchical data structures are much more

expensive to rebuild each timestep than a fixed grid.

Figure 2.9. R-tree for skewed and uniform particle distribution.

Notably, it has been discovered that, even for highly skewed data, a fixed grid performs

orders of magnitude better than hierarchical data structures including the R-tree, R*-tree and

quad-tree for the simulation of moving points in two dimensions [17]. Furthermore, a special

variation of the fixed grid called a “two-tier grid”, which is similar to a quad-tree, has been

designed to better deal with highly skewed data [17].

2.12 Summary

In this chapter, an overview of molecular dynamics was provided, including the popular

Lennard-Jones potential pair algorithm, periodic boundary condition and the use of a fixed

grid to perform range searches. Two methods to execute range searches over a fixed grid, the

traditional cell list and an “atom list”, were also introduced, as was the verlet neighbour list

technique. Furthermore, this chapter reviewed several popular space-filling curves and

concepts related to a skewed distribution of points.

(a) Uniform distribution. (b) Skewed distribution.

Root node

Level 1 node
Level 2 node

Region of
empty space Points are

grouped into
MBRs, and
hierarchy is
built

13

3 Proposed Techniques to Improve Self-Spatial Joins

In this chapter, several new optimisation techniques for spatial join queries on a fixed grid are

proposed and explained. Note that the performance result of each technique appears under the

corresponding sub-heading in Chapter 5. A fundamental approach to increasing query speed

is to reduce the search space, which is what many of these techniques attempt to achieve.

Immediately following are the definitions of some important values used throughout the rest

of the thesis.

Definition 4. Let rs be defined as the search radius rs used to find neighbour pairs. Note that

this value of rs will depend on whether the verlet technique is used (Section 2.8) as follows:

⎩
⎨
⎧

=
ot usednique is nerlet tech , if vr
sed nique is uerlet tech , if vr

 r
c

v
s

Definition 5. Let cellSidesPerRs be defined as the side length of a single cell in the fixed grid

divided by the search radius rs as follows:

sr
 sidecell of length erRscellSidesP =

Definition 6. Let cellListSpan be the number of cells which a cell list will span in each

direction, as given by:

⎡ ⎤ 1erRscellSidesP 2an cellListSp +×=

Definition 7. Any atom checked against another atom (to check if it is within rc and therefore

a neighbour) will be called a candidate neighbour, and the fraction of candidates in range,

denoted by fractCandidatesInRange, will be given by:

med per atolls searchaverage cevolume of

erecutoff sphvolume of

s neighbour candidatetotal # of

s in range neighbour candidatetotal # of ge datesInRanfractCandi

≈

=

Figure 3.1. Example of cell list illustrating definitions 5-7.

cellLen
rs

cellListSpan (in cells)

rs = rc = 5
cellLength = 2

cellSidesPerRs = 5/2 = 1.5
cellListSpan = 2×⎡1.5⎤+1 = 5 cells
fractCandidatesInRange ≈ 4/3π×1.53 / 53 = 11%
 (assuming cubic cell list used)

14

3.1 Minimum Cell List

The original cell list technique (Section 2.7) proposes choosing a cell length ≤ rc. This

effectively means executing each range search over a cube with a volume of at least 33×rc,

which is 6.45 times the volume of the cutoff sphere (4/3π×rc
3) when rc = cell length. On

average, only 15.5% of candidates will be in range. A way to improve on this is to make a

finer grid by choosing a cell length greater than rc. The cell list will now span more than 3

cells along each dimension (Definition 6).

A cell list spanning more than three cells can be refined to eliminate any cells beyond rc of the

root cell; this effectively describes a box with rounded edges, as illustrated in Figure 3.2. To

avoid confusion with the original cell list, this technique will be called a minimum cell list,

and a cell list which has not been refined will be called a cubic cell list.

Definition 8. Let cubic cell list denote a traditional cell list which includes all cells within

plus and minus rs of a root cell along each dimension.

Definition 9. Let minimum cell list denote a cubic cell list which has been refined to exclude

any cells further than rs from the root cell.

Notice that the difference in volume between the minimum cell list and cutoff sphere reduces

as the grid becomes finer. Whereas a circle occupies 78% of the area of its bounding square, a

sphere only occupies 52% of the volume of its bounding cube. Generation of a minimum cell

list only needs to occur once at the start of each simulation (or each time rc changes relative to

the cell length), and the same single list can be used like a template for each range search

from any cell. Results of using a minimum cell list as opposed to a cubic cell list technique

are investigated in Section 5.4.

Figure 3.2. Minimum cell list.

q
q

Shape of minimum
cell list resembles
box with rounded
edges.

Jagged shape
becomes more like
a sphere as rc
spans more cells.

15

3.2 Half Range Searches

Often it may be desired to store a list of neighbours of each atom separately, but in molecular

dynamics simulations it is more efficient to find/store a single exhaustive list of all unique

neighbour pairs. A problem with the original cell list is that each pair is captured twice;

making it necessary to check for duplicates. In Figure 3.3.a, point j will be captured when

searching from point i, and point i will be captured when considering point j.

The proposed solution is to restrict range searches so that all points on a chosen side of a

chosen axis are ignored, thereby only searching one half of the cutoff sphere. This technique

will be called half range search and half range searches can be used to resolve self-spatial

join queries, since the radius of each range search is the same.

Definition 10. Let half range search denote a range search which excludes a chosen side of a

chosen dimension. In the case of three dimensions, only a hemisphere is searched.

So now, instead of generating a perfectly symmetrical minimum cell list, all cells above or

below the root cell, along one chosen axis, can be safely eliminated. Figure 3.3.b shows a half

range search whereby only the upper hemisphere is searched. When considering j, the lower

point i can be ignored, since it will obviously be captured when considering i to j.

Definition 11. Let half minimum cell list denote a minimum cell list (Definition 9) designed

to execute half range searches (Definition 10) by excluding all cells above or below the root

cell along a chosen axis.

16

Figure 3.3. Use of full range search vs. half range search.

Note that the axis which is “halved” should be chosen carefully to improve spatial locality.

For instance, the code used in testing [24] stored the master cell array as a one-dimensional

vector such that the cell at location (x, y, z) maps to the element at index (x×cellsPerSide2 +

y×cellsPerSide + z). By halving along the x-axis instead of the y or z axis, each half range

search will be spread across a smaller, more contiguous, range in memory. Results of using

half ranges searches versus full range searches are investigated in Section 5.7.

3.3 Early Elimination of Non-Neighbours

For any given search, even one with a high value of cellSidesPerRs (Figure 5.7), the fraction

of candidates in range (Definition 7) is usually low. Normally, to check the distance between

points2, the programmer would simply calculate:

222)()()(},{ zzyyxx ijijijjidist −+−+−= .

To reduce the cost of “neighbour misses”, the programmer should first discard any candidate

pair where j is above i according to half range search criteria (i.e. if jy>iy), using some

2 For the sake of simplicity all distances are represented as jy – iy. Notice however, that if

periodic boundary condition is used (as it was in this thesis) distances along each dimension

are determined by first checking if they wraps around the box boundary (Section 2.3).

{ (-2,0), (-1,0), (0,0), (1,0), (2,0),
 (-2,1), (-1,1), (0,1), (1,1), (2,1),
 (-1,2), (0,2), (1,2) }

Representation:
 { (-1,-2), (0,-2), (1,-2)
 (-2,-1), (-1,-1), (0,-1), (1,-1), (2,-1),
 (-2,0), (-1,0), (0,0), (1,0), (2,0),
 (-2,1), (-1,1), (0,1), (1,1), (2,1),
 (-1,2), (0,2), (1,2) }

Representation:

i

j

i

j

Full range
search

Half range
search

(b)
Half minimum cell

list

(a)
Full minimum cell list

NOTE: will
capture each
neighbour
twice (once
from each
end)

Normal approach: Search sphere Faster approach: Search upper hemi-sphere

17

tiebreaker if jy=iy. Next, the distance along each axis can be calculated and checked against rc

separately; and the pair discarded immediately if any distance is greater than rc (i.e. if jx-ix >

rc). The latter step will be referred to as the early elimination.

Definition 12. Let early elimination describe the process of eliminate a candidate pair early

if the distance along any axis is greater than the cutoff radius, rather than waiting to

calculate the final distance.

Definition 13. Let fractionAtomsEliminatedEarly denote the fraction of atoms subject to

early elimination. If a rectangular region of cells is searched, this is given by:

 searchedcells of volume
)r(2- 1 early eliminated atoms fraction

3
c×

=

For instance, using a full cubic cell list and the common case of cellSidesPerRs=1, the

fractionAtomsEliminatedEarly is 70% ({2×1})3 / 33), which is considerable, although one

should note that if a minimum cell list is used, fractionAtomsEliminatedEarly decreases

quickly as cellSidesPerRs increases, since a minimum cell list cuts out most of the cells

outside rc.

Finally, the distance squared should be calculated {i.e.: dist2{i,j} = (jx – ix) 2 + (jy – iy) 2 + (jz –

iz) 2 } and discarded if greater than rc squared (i.e. if dist2 > rc
2). The reason for this is that

square root operations are expensive (Figure 7.3 in Appendix B) and should be avoided

wherever possible. Notice that, using the Lennard-Jones equation, it is possible to use the

distance squared directly and avoid ever calculating the actual distance (Section 2.2). Results

of using the early elimination of non-neighbours technique are investigated in Section 5.8.

3.4 Sub-grids and Cell List Template Guides

In the half range search shown in Figure 3.4, it is obviously a waste of time to check over the

points in the shaded adjacent cells. Although they are in range of the root cell, they are not in

range of the root atom. However, calculating the minimum distance from every atom to every

adjacent cell can be expensive. The idea of a sub-grid is that every cell in the main grid is

divided into a smaller sub-grid and, for every range search, the appropriate sub-cell for each

root atom is determined in constant time. Notice that atoms are stored and sorted in cells, but

not stored in sub-cells. For each sub-cell, an array is pre-computed before the simulation

begins, whereby each element corresponds to a cell in the cell list and effectively says true or

18

false: is this adjacent cell in range. For instance, in Figure 3.4 only two of the six adjacent

cells (33%) are in range of the bottom left sub-cell.

Figure 3.4. Use of sub-grid to refine search.

The reason for using a sub-grid instead of just using a finer main grid is primarily due to

storage requirements. Although making a grid with 100 cells per side sounds trivial, it means

storing 1 million (1003) cells. Note that the optimal number of cells per side is much higher if

points are highly skewed (Section 2.11). Results of using sub-grid cell list template guides are

investigated in Section 5.9.

3.5 Minimum Bounding Rectangles in Cells

R-trees are a hierarchical spatial data structure built using MBRs (Definition 3). However it

was realised that the use of MBRs can also be applied to fixed grid. Specifically, a MBR can

be kept for each cell and updated whenever a point moves within that cell. Figure 3.5 shows

the use of MBRs in cells for an evenly and skewed distributed set of points. Minimum

bounding spheres (MBS) could also be kept and used, but these would be more expensive to

compute [33].

For each range search (on every atom), there will always be a considerable proportion of cells

only just tipped/overlapped by the cutoff radius (Figure 3.5.a) – depending on the number of

cellSidesPerRs. Such cells can be indicated, and for these cells, it is possible to check if the

distance from the root atom to the MBR is greater than the cutoff radius, in which case the

exhaustive checking of these atoms could be bypassed.

This method can be combined with the minimum cell list and sub-grid method. One idea is

that each sub-cell could store a pre-computed array of values, whereby each value

corresponds to an adjacent cell and indicates what percentage of the cell overlaps the cutoff

boundaries. All cells below a certain value could have their MBRs checked.

E

0 1 3 2 4

0

1

2

Sub-grid
superimposed

on cell

Main
grid Search radius

around main
cell

Search radius
around sub-
cell cell

{ (-1,0), (0,0), (1,0),
 (-1,1), (0,1), (1,1) }

Minimum cell list
representation:

{ (true), (true), (false),
 (false), (false), (false) }

Corresponding cell list
template guide (for this
sub-cell only):

19

However, whether or not this method can produce a timesaving depends on many factors. If

there are too few particles/points per cell, it will be quicker to check the root atom against

each of these particles, rather than their MBR. The other factors are the fraction of cells just

tipped, and the number of these with MBRs out of range. Furthermore, if the points have a

skewed distribution, MBR are likely to be smaller (on average). In liquid, where particle

distribution is very even, each MBR is likely to occupy a large volume of each cell,

depending on the number of atoms per cell. Results of using MBRs in cells are investigated in

Section 5.10.

Figure 3.5 The use of MBR in grid cells for two different data sets.

3.6 Selective Checking of Verlet Neighbours

The verlet neighbour list (Section 2.8) is effective, because the cost of updating a list is much

cheaper than rebuilding it. To reduce the cost of updating the neighbour list further, this thesis

proposes two methods. Firstly, it was thought that, rather than check displacement of all

atoms every timestep, a more efficient algorithm could measure the number of iterations

between rebuilds, and only check displacements at sensible intervals, which would decrease

towards once per iteration as the sum of the two largest displacements approaches rv - rc

(Section 2.8). For example, if it takes twenty iterations before a rebuild is needed, chances are

it will take about twenty iterations before the next rebuild. Instead of checking every timestep,

the algorithm might check after the tenth iteration, and depending on the maximum

displacements, might decide that it is safe to delay the next check for another four timesteps.

Moreover, a similar approach could be used to avoid checking neighbours which are within

the verlet shell radius rv, but not within rc of each other, every timestep. In Figure 2.5 for

example, atom 3 is just within rv of atom 1, and will presumably take several timesteps before

(a) Even point distribution. (b) Skewed point distribution.

Notice the
cutoff radius
only just
overlaps many
cells, but in
these cases does
not overlap the
MBRs.

For a skewed
distribution,
even highly
populated
MBRs may
have a
relatively small
volume.

20

it can move within range of rc. This technique could be successful because the number of

atoms which are within rv but outside rc, can be significant, especially if a large rv is used.

Definition 14. Let fractNeigOutsideRc be the fraction of all neighbours in a verlet list which

are not within the cutoff radius distance of each other, which can be approximated as:

 −

=
 −

=
×

× − ×
= 3

cv

3
cv

3
v

3
c

3
v

3
v

3
c

3
v

)/r(r
 1)/r(r

r
 rr

r4/3 π

r4/3 πr4/3 π
 tsideRc fractNeiOu

Definition 15. Let safeDist be the minimum distance two atoms must travel before they can

become in range of each other, as given by:

cr - atoms between distance afeDists =

Instead of calculating the distance between all neighbours each timestep, the safeDist can be

used to determine how long to delay checking the distance between any neighbours outside rc.

To decide when the distance between these atoms should be checked again a number of

schemes may be appropriate and two of these are proposed below.

The first scheme may be to record the maximum velocity of any particle in the system each

timestep, and use this to determine exactly how many iterations to wait before checking the

distance between those neighbours, as shown in Figure 3.6 and the following equation:

 timestep)ity (max veloc2
safeDist rs pair f neighbouxt check o before neiterations

××
=

Figure 3.6. Pseudo code for selective checking of neighbours using maximum velocity.

A more sophisticated scheme would be to record the safeDist for each neighbour pair, and

decrement this each iteration. When the safeDist for any pair becomes less than zero, the

distance between neighbours would be computed again. Initially it was thought the velocity of

both atoms in a neighbour pair could be used to decrement the safeDist each timestep,

however many interaction models also take acceleration into account when moving atoms, or

may not even want to record velocity at all. For this reason, using the displacement of atoms

between timesteps is much safer. Each timestep, the displacement of all atoms since the last

timestep would be calculated and recorded. The verlet neighbour list would then be updated,

determine max velocity of any atom for this iteration
For each verlet neighbour:
 If (iterations before next check > 0):
 decrement iterations before next check
 Else:
 update distance between neighbours // (expensive step)
 safeDist = distance between neighbours - rc
 iterations before next check = safeDist / (2× max velocity × timestep)

21

such that any neighbour pair with a safeDist greater than zero would have its safeDist value

decremented by the sum of the displacement of both atoms since the last timestep. Finally, if

the safeDist is less than zero, the distance between neighbours and safeDist would be re-

calculated. Figure 3.7 helps illustrate this process using pseudo code. Results of using these

selective neighbour checking techniques are investigated in Section 5.15.

Figure 3.7. Pseudo code for selective checking of neighbours using atom displacement.

For each atom:
 calculate displacement since last timestep
For each verlet neighbour:
 If (safeDist > 0):
 safeDist = safeDist – (displacement first atom + displacement second atom)
 If (safeDist <= 0):
 update distance between neighbours // (expensive step)
 safeDist = distance between neighbours - rc

22

4 Implementation

This chapter gives an overview of how simulations were implemented and results obtained.

Test code is available at <http://manning.it.jcu.edu.au/~jc130551/thesis/> [24].

4.1 Simulation Testing Sequence

The following is the sequence of main events involved in each simulation.

1. Initial setup:

1.1. All atoms were placed into a perfect lattice formation, and given slight random

offsets.

1.2. All atoms were given random velocities (Appendix D).

1.3. The vector of cells forming the grid was initialised (using some number of cells per

side).

o NOTE: This step often included generation of a minimum cell lists template,

loading of cell lists and several other setup functions.

2. For each iteration (until the desired number of timesteps had elapsed):

2.1. A list of all neighbours was compiled.

o NOTE: This was achieved by placing all atoms into cells then executing a complete

self-spatial join using rv if verlet was used, or rc if verlet was not used. For a verlet

update, this step involved checking distance between atoms in the verlet

neighbours list.

2.2. Forces between neighbours were calculated and accumulated on each atom using the

neighbours list.

o NOTE: Lennard-Jones pair potential was used.

2.3. Atoms were moved, which included checking if coordinates fell outside the box, in

which case they were wrapped around.

2.4. Timestep was incremented.

This is standard procedure for molecular dynamics simulations. Typically, the step of building

the neighbours list is by far the most time consuming part of a molecular dynamics simulation

[11].

http://manning.it.jcu.edu.au/~jc130551/thesis/

23

4.2 Scientific Testing Process

All experiments were run on the same computer, a 2.6 GHz Pentium 4 machine with 512 MB

of RAM and 512kB of L2 cache. The molecular dynamics system tested was implemented as

a C++ console application written, compiled and executed using Microsoft Visual C++ 6 [30].

Each graph of results in Chapter 5 represents a series of simulations, executed in batch. The

number of timestep/iterations used in different simulations was varied, since simulating over

fifty thousand atoms could take several minutes per iteration, but simulating five hundred

took less than a second per iteration. For this reason, a time limit of about one minute was set

for most simulations, at which point they were terminated, even if the desired number of

iterations had not completed. Results of the simulations were appended to a CSV file, and

analysed using Microsoft Excel.

Many metrics and tallies, including the number of distance calculations, were recorded, but

the main metric of performance presented in results was the average number of CPU tics

elapsed per iteration. On the test machine each CPU tic was approximately 0.015 of a second

(approximately 67 tics per second). Since the goal of this thesis was to improve overall

simulation speed, CPU tics was the most practical metric for comparing different methods.

However, while the simulation times lead to reasonably accurate estimates of relative speedup

between competing algorithms, the absolute measure of CPU time is dependent on compiler

tools, programming language, and the underlying computer hardware used to run simulations.

Running the same batch of simulations on a machine with different specifications is likely to

produce different results. For example, the performance improvement of space-filling curves

(Section 5.12) should be significantly better on a machine with better cache. Furthermore, the

best implementation techniques on one compiler might not necessarily yield the best results

on a different compiler. All simulations presented were small enough to fit entirely in

memory.

24

5 Experimental Results and Discussion

In this chapter, the performance results of various techniques and implementation options,

including all techniques proposed in Chapter 3, are presented. The sections and techniques

tested are arranged in a logical sequence, such that the most successful techniques discovered

in one section are generally adopted in all subsequent sections. Most unsuccessful techniques

were abandoned immediately. Sections 5.2 to 5.13 are focussed on optimising the build time

for the neighbours list and do not use the verlet neighbour list technique; only Sections 5.14

and 5.15 use the verlet list technique. The final two sections, Sections 5.16 and 5.17, test

accuracy relationships specific to a molecular dynamics simulation using the Lennard-Jones

interaction model.

5.1 Guide to Results

Each graph in this chapter shows the values of the main input parameters used in the

simulation, hence allowing replication of results. A guide to these variables is provided

below. Table 1 shows the main input variables defined at the beginning of each simulation,

Table 2 shows several variables which were useful in analysis of results, and Table 3 shows a

few of the most important variables calculated at the end of every simulation, many of which

represent performance metrics. Many of the names for these variables are used throughout the

rest of the thesis. Appendix A details the properties of the data types shown. In all tests atom

coordinates and forces are represented as doubles (Appendix C).

Variable Name Description Data Type Comment

numAtoms Number of atoms used in the

simulation.

integer In all simulations atoms were evenly

distributed; never clustered.

rc Cutoff radius double

boxLen Length of the cubic box sides double

Cutoff radius was never allowed to exceed

boxLen/2.

CPS Cells per side used in the simulation integer Many graphs show how performance varies

as CPS varies. Other results attempted to find

an optimal CPS, and then ran the simulation.

timeStep Duration of each timestep double Notice the effective duration of a simulation

is equal to timeStep×timeStepsToExe.

timeStepsToExe Number of timesteps to execute integer Many simulations were ended early if they

exceeded some time limit.

useVerlet Shows whether or not verlet

neighbour list technique was used

bool

rv Verlet radius used is above was true double

Note that only the last few sub-sections of

results use the verlet list technique.

Table 1: Main input variables.

25

Variable Name Description Data Type Value Comment

cellLen Length of each cell side double boxLen/CPS -

boxVol Volume of the box double boxLen 3 -

density Density of atoms (number of

atoms per unit volume)

double numAtoms/boxVol Often boxLen was set

such that density would

stay constant across a set

of simulations.

numCells Number of cells in the grid integer CPS 3 -

avgAtomsPerCell Average number of atoms

per cell.

double numAtoms/numCells -

rs Represents the search radius

used to build the neighbour

list, and depends on whether

the verlet technique is used.

double if useVerlet is true

 rs = rc

else

 rs = rv

Helps eliminate

confusion.

rvDivRc The verlet radius compared

to the cutoff radius

double rc / rv Best way to measure rv

in results.

avgLatticeSpacing Distance between adjacent

atoms if set in a lattice

structure.

double numAtoms 1/3 /

boxLen

Useful to visualise rough

separation of atoms.

cellSidesPerRs Number of cell sides covered

by rs.

double cellLen/rs -

Table 2: Useful derived variables.

Variable Name Description Data Type Comment

avgTicsPerIt Average number of tics elapsed

during each iteration. Note that

every 100 tics took

approximately 1.5 seconds.

double The most common metric of performance used in

this thesis. Does not include setup time, but does

include building the neighbour list, calculating

forces and moving atoms etc.

UavgTicsPerIt Average number of tics for

each iteration not including

calculating forces and moving

atoms.

double Includes building neighbour lists, and updating

verlet list if the verlet technique is used.

avgNeiSize Average size of the neighbours

list.

double If verlet neighbour list is used, avgNeiSize will

typically be greater than the actual average

number of true neighbours found each iteration.

avgInRc Average number of neighbour

pairs within rc found each

iteration.

double If verlet technique is not used, this will be equal to

avgNeiSize.

avgNeiPerAtom Average number of neighbours

per atom

double Is equal to 2×avgInRc/numAtoms, but can be

estimated/approximated before the simulation by

(numAtoms-1) × {(4/3π×rc
3

) / boxVol}

Table 3: Results and performance measures.

26

5.2 Scalability of Fixed Grid

There is a slight misconception in molecular dynamics simulations that performance of any

even distribution simulation, using a fixed grid, scales linearly with the number of particles.

Results in Figure 5.1 and Figure 5.2 show this is only true if the density of atoms stays

constant relative to rc. In Figure 5.2, rc was kept constant, but the box length and number of

cells per side increases such that the length of each cell and the average number of atoms per

cell stayed constant. Therefore, in reality, this type of molecular dynamics simulation scales

O(N) whereby N = numAtoms×(1+avgNeiPerAtom). This relationship is shown in Figure 5.1

where performance increases roughly proportionally with the volume of the cutoff sphere and

therefore the average number of neighbours found each iteration.

Increasing numAtoms in a fixed box with a fixed rc

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

numAtoms

av
gT

im
eP

er
It

0

100,000

200,000

300,000

400,000

500,000

600,000

av
gN

um
Ne

ig
sP

er
It

avgTimePerIt

avgNeiSize

numAtoms: *
rc: 0.9
boxLen: 10
CPS: 10
timeStep: 0.004
timeStepsToExe: 5
useVerlet: 0

avgAtomsPerCell: *
density: *
avgLatticeSpacing: *

technique:
half_min_cell_list

Figure 5.1. Performance when increasing the number of atoms in a fixed size box.

Increasing numAtoms using a constant density of atoms,
number of atoms per cell and rc.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 20000 40000 60000 80000 100000 120000 140000

numAtoms

av
gT

im
eP

er
It

numAtoms: *(4^3-100^3)
rc: 1
boxLen: *(4-100)
CPS: *(4-100)
timeStep: 0.004
timeStepsToExe: 5
useVerlet: 0

avgAtomsPerCell: 1
density: 1
avgLatticeSpacing: 1

technique:
half_min_cell_list

Figure 5.2. Performance when keeping atom density and atoms per cell constant.

27

5.3 Breakdown of Costs

The following experiments demonstrate the cost of performing each of the steps involved in a

single timestep/iteration in the simulation (Section 4.1). Figure 5.3 and Figure 5.4 show the

same set of results, whereby 10000 atoms were simulated using the Lennard-Jones pair

potential model using a half atom list technique and a range of cutoff radius values. Varying

the number of atoms had negligible affect on this performance breakdown, meaning results in

Figure 5.4 were representative of simulations with any number of atoms. These results show

that time to build the neighbours list took the bulk of processor time. As rc increases and

avgNeiPerAtom increases, the proportional cost of placing atoms in cells and repositioning

atoms reduces. In these simulations, total build time (which includes putting atoms into cells)

took about 85-90% of the total cost per iteration. Calculating forces, velocity and positions for

each iteration took the remainder of the time.

Note these results are just a rough guideline; the performance breakdown depends largely on

the cost per neighbour of the interaction model used, not to mention the cost of and frequency

of any scientific functions which might be used. In these tests a simple implementation of the

Lennard-Jones potential algorithm was used to calculate forces, but the performance of this

could have been significantly improved by implementing techniques described in Section 2.9.

Breakdown of costs (using the atom list technique)

0

20

40

60

80

100

120

140

160

180

0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

cellSidesPerRs

av
gT

ic
sP

er
It

0

10

20

30

40

50

60

70

80 total

build_list

calc_forces

reposition_atoms

update_cell_list

avgNeiPerAtom

numAtoms: 1000
rc: 0.25-5
boxLen: 20
CPS: 8
timeStep: 0.01
timeStepsElap: 100
useVerlet: 0

density: 0.125

technique:
half_cubic_atom_list

component costs

Figure 5.3. Various costs of using atom list.

28

Breakdown of costs (using the atom list technique)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.03 4.08 5.68 7.47 10.2 13.9 17.6 21.6 25.9 30.2 35.9 45.8 58.5 71

avgNeiPerAtom

%
 o

f a
ve

ra
ge

 ti
cs

 p
er

 it
er

at
io

n
%rebuild

%cell

%repos

%calc_force

numAtoms:
1000
rc: 0.25-5
boxLen: 20
CPS: 8
timeStep: 0.01
timeStepsElap:
100
useVerlet: 0

density: 0.125

Figure 5.4. Breakdown of costs using atom list.

5.4 Minimum Cell List

The following graphs show the difference in volume (the number of cells) between four

different types of cell lists outlined in Sections 3.1 and 3.2. The number of cells was

calculated by a small fragment of code, which first generated the cubic cell lists and then

eliminated any cell outside of rc to create the corresponding minimum cell list. Figure 5.5 and

Figure 5.6 show the volume of the minimum cell list increases quite smoothly compared to

the volume of the cubic cell list. Figure 5.5 shows that the volume of the minimum cell lists

compared to the volume of the cubic cell lists slowly approaches 52% as cellSidesPerRs

increases, although the trend is very jagged. The difference is always greatest just after the

number of cells in the cubic cell list increases. Obviously, refining cubic cell lists into

minimum cell lists is well worth the effort of coding if cellSidesPerRs is greater than one.

Figure 5.7 shows the fraction of candidates in range (Definition 7) for each type of cell list.

Even for high values of cellSidesPerRs, the fraction of candidates not in range is large, thus

representing a large detriment to performance.

29

Size comparison of different types of cell lists

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8 9 10 11 12

cell sides per search radius

ce

lls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cubic full

min full

cubic half

min half

cells in full min list
/ full cubic list
cells in half min
list / half cubic list

Figure 5.5. Number of cells of minimum cell lists vs. cubic cell lists.

Number of cells for different types of cell lists

0

100

200

300

400

500

600

700

800

0 1 2 3 4

cell sides per search radius

ce

lls

cubic full
min full
cubic half
min half

Figure 5.6. Number of cells in different cell lists.

30

Fraction of candidate neighbours in range for different cell lists

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12

cell sides per search radius (cellSidesPerRs)

fr
ac

tio
n

of
 c

el
l l

is
t v

ol
um

e
oc

cu
pi

ed
 b

y
cu

to
ff

sp

he
re

 (o
r h

em
is

ph
er

e
in

 c
as

e
of

 h
al

f l
is

ts
)

cubic full
min full
cubic half
cubic half

Figure 5.7. Fraction of candidates in range for cell lists.

5.5 Loaded Cell List vs. Unloaded Cell List

In the following experiment, two methods of implementing minimum cell lists (Definition 9)

were compared. When considering each cell, the indexes of all other cells in range can be re-

calculated (using a single minimum cell list template) for each iteration, or can be calculated

and stored for each cell at the start of the simulation before the first iteration. These

techniques have been labelled as “unloaded min cell list” and “loaded min cell list”

respectively. Calculating each cell index is not just adding the coordinates of the cell to the

cell list template value, but also checking if these values wrap around the boundaries.

Test results show a loaded minimum cell list yields much better performance than an

unloaded implementation. Figure 5.8 shows that storing values can reduce cost per iteration

significantly – more than halving it for cellSidesPerRs values of four or more. The

performance saving increases roughly proportional to the number of cells in the cell list itself

(Figure 5.6). However, it is worth noting that it often takes a long time to load a cell list and

it can also occupy a lot of storage space. For each cell, a cell list must be loaded. Figure 5.5

shows the number of cells in a half minimum cell list. The total number of indexes that must

be stored in a grid using the loaded cell list technique has a lower bound of CPS3 × (4/3 π

cellSidesPerRs3) / 2, (if using a half minimum cell list) and therefore does not scale well for

large simulations where both these values would be high.

31

As an example, if cellSidesPerRs=1 and CPS=11 then only 23,958 (18×113) indexes must be

stored but if cellSidesPerRs=3.15 and CPS=35 then 9,646,875 (225×353) indexes must be

stored. These two examples took 31 tics (half a second) and 7985 tics (2 minutes) respectively

(Figure 5.8). Although initial setup cost is usually not considered in these experiments it

represents a substantial time penalty (many minutes for larger simulations) and storage

penalty for loaded cell lists. Furthermore, if during the simulation either rc or the number of

cells per side were changed, then the cell list would need to be reloaded, and this cost incurred

again. The inability to easily and dynamically change these values is a significant

disadvantage of the loaded cell list technique.

Loaded cell list vs. unloaded cell list

7985

66719

41594

31
8750

10000

20000

30000

40000

50000

60000

70000

0 1 2 3 4 5

cellSidesDivRs

av
gC

lo
ck

sP
er

It

unloaded:
numAtoms=10000
unloaded:
numAtoms=20000
loaded:
numAtoms=10000
loaded:
numAtoms=20000

timeToLoadAdjList
numAtoms=100000
timeToLoadAdjList
numAtoms=200000

numAtoms:
10000,20000
rc: 0.9
boxLen: 10
CPS: *
timeStep: 0.004
timeStepsToExe: 1
useVerlet: 0
t h i

Loaded cell list vs. unloaded cell list

7985

875
31

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5
cellSidesDivRs

av
gC

lo
ck

sP
er

It

unloaded:
numAtoms=10000

unloaded:
numAtoms=20000

loaded:
numAtoms=10000

loaded:
numAtoms=20000

timeToLoadAdjList
numAtoms=100000

timeToLoadAdjList
numAtoms=200000

numAtoms:
10000,20000
rc: 0.9
boxLen: 10
CPS: *
timeStep: 0.004
timeStepsToExe: 1
useVerlet: 0
technique:
 half_min_cell_list

Figure 5.8. Performance improvement of storing adjacent indexes for each cell.

32

5.6 Atom List vs. Cell List

The following preliminary experiments were intended to show when it is preferable to use an

atom list (Section 2.6), calculating which cell indexes are in a rectangular range of each atom

individually, rather than a minimum cell list (Section 3.1).

As expected, results showed that for small values of cellSidesPerRs the half atom list

performs much better than the half cell list, because only cells within a minimum bounding

rectangle of each atom itself are considered (Figure 2.3), whereas, a minimum cell list always

searches at least eighteen cells. All these simulations were run a number of times using a

range of cell per side values, so that the optimal speed could be determined (Figure 5.9). Due

to the nature of cell lists, the optimal number of cells per side for a cell list would typically be

such that the length of cells was some multiple of rc. Atom lists on the other hand exhibited a

much smoother trend.

Using an optimal number of cells per side for each technique, the loaded cell list usually

performed better than the atom list. However improvement margins were much less than

anticipated. In some cases the loaded cell list performed worse; even though the atom list

requires each cell index to be calculated and searches a cubic area, whilst the cell list searches

a roughly semi-spherical area. In Figure 5.10, using 50,000 atoms and a cutoff radius about

10% of the box length, the minimum loaded cell list only produced a performance

improvement of about 5.2% over the atom list.

Note that the value of rs with respect to the box length is of critical importance. The larger the

optimal cellSidesPerRs is likely to be, the more the shape of the minimum cell list

approximates a sphere, and eliminates unnecessary cells (Figure 5.5). The optimal number of

cells per side and performance difference between using a loaded cell list and atom list also

fluctuated significantly if rc and the box length remained constant but the number of atoms

was changed. A more detailed analysis of optimal number of cells per side is provided in

Section 5.13.

33

Half minimum cell list vs. half atom list

306.4

394.5

297

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3 3.5
cellSidesPerRs

av
gT

ic
sP

er
It

atoms=5000 -
cubic atom list

atoms=5000 -
unloaded min
cell list
atoms=5000 -
(loaded) min cell
list

numAtoms: 5000
rc: 0.1
boxLen: 1
CPS: *
timeStep: 0.01
timeStepsToExe:
20
useVerlet: 0

Figure 5.9. Performance of minimum cell list vs. half cubic atom list.

Half minimum cell list vs. half atom list

25500

1970020789

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5

cellSidesPerRs

av
gT

ic
sP

er
It

unloaded
min cell list

loaded min
cell list

cubic atom
list

numAtoms: 50,000
rc: 3.99
boxLen: 36.84
CPS: 7-42
timeStep: 0.01
timeStepsElap: 3
useVerlet: 0

density: 1

Figure 5.10. Performance of minimum cell list vs. cubic atom list.

34

5.7 Half Range Searches

The following experiments compare the performance of simulations using the half range

search technique proposed in Section 3.2 to a normal range search technique. Each atom was

given a unique integer id. For the full range search (using a minimum cell list), candidate

neighbour atoms were rejected if their id was greater than the atom being considered. For the

half range search (Definition 10), no cells to the left of the root cell were searched, and

candidate neighbours atoms were immediately rejected if they had a smaller x coordinate than

the atom in question. If both atoms had the same x coordinate, atom id was used as a

tiebreaker; the neighbour atom was rejected if it had a greater atom id. Both techniques

ensured each neighbour pair was captured only once.

Figure 5.11 shows the performance of a cubic atom list using full range search and half range

search techniques. In this particular simulation, the half range search clearly outperforms a

full range search technique – using optimal performance the full list is about 65% slower in

this case. Notice the full range search attains its best performance with a lower number of

cells per side than the half range search. This was consistent with most collected results for

cell lists. As cellSidesPerRs increases so too does the performance difference between full

and half range search. A higher cellSidesPerRs value means more cells outside of the atom’s

cell (in every direction) will be captured during each search, and the number of cells captured

by a full range search will slowly approach double that captured by the half range search. The

difference in the number of cells between the half and full cell lists dictated improvements

(Figure 5.6).

Figure 5.12 shows similar results, but using a minimum cell list instead of atom list.

Improvements of this technique for cell lists proved to be slightly less than improvements for

the atom list, but still significant – using optimal performance, the full list is about 25%

slower in this simulation.

35

Full range search vs. half range search for atom list over
changing CPS

2085

3230

0

1000

2000

3000

4000

5000

6000

7000

0.7
0

0.9
7

1.2
5

1.5
3

1.8
1

2.0
9

2.3
7

2.6
5

2.9
2

3.2
0

3.4
8

3.7
6

4.0
4

cellSidesPerRs

av
gT

ic
sP

er
It

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

pe
rc

en
ta

ge
im

pr
ov

em
en

t

half cubic
atom list
full cubic atom
list
improvement

numAtoms: 10,000
rc: 3
boxLen: 21.54
CPS: 5-30
timeStep: 0.01
timeStepsToExe: 200
useVerlet: 0
density=1

Figure 5.11. Performance of full and half range search using atom lists.

Full range search vs. half range search for minimum cell list over
changing CPS

2115

2649

0

2000

4000

6000

8000

10000

12000

0.7
0

0.9
7

1.2
5

1.5
3

1.8
1

2.0
9

2.3
7

2.6
5

2.9
2

3.2
0

3.4
8

3.7
6

4.0
4

cellSidesPerRs

av
gT

ic
sP

er
It

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

pe
rc

en
ta

ge
im

pr
ov

em
en

t

half min cell list

full min cell list

improvement

numAtoms: 10,000
rc: 3
boxLen: 21.54
CPS: 5-30
timeStep: 0.01
timeStepsToExe: 20
useVerlet: 0
density=1

Figure 5.12. Performance of full and half range search using minimum cell lists.

36

5.8 Early Elimination of Non-Neighbours

Figure 5.13 shows performance of using the different early elimination techniques described

in Section 3.3 using a half minimum cell list. Results show that using early elimination

(checking the distance between each atom along each axis is less than the cutoff, before

calculating total distance) gave negligible performance improvements, and in some cases cost

more. Although it was proved a high fraction of candidate neighbours are subject to early

elimination, it was not worth the cost of checking for early elimination, implemented in code.

Avoiding the use of square root gave an efficiency increase of up to approximately 3%. The

author recommends that the early elimination technique is not worthwhile, especially if using

a half cell list. However, avoiding square root unless/until required is still recommended.

Early Elimination Of Non-Neighbours

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

cellSidesPerRc

av
gT

ic
sP

er
It

no early elim &
using sqrt

no early elim

early elim

numAtoms: 10000
rc: *
boxLen: 1
CPS: 10
timeStep: 0.004
timeStepsToExe: 5
useVerlet: 0

technique:
half_min_cell_list

Figure 5.13. Performance improvement of early elimination and using distance squared.

5.9 Sub-grids and Cell List Template Guides

The sub-grid technique described in Section 3.4 was implemented as follows. A half

minimum cell list template was generated and used to calculate and store the indexes of the

corresponding adjacent cells of each cell. A “sub-grid template guide” was generated such

that each sub-cell identified which cells in the cell list template were not in range, using a

vector of integers (since this is more efficient than using a vector of booleans in C++ [20]).

37

For each half range search, the atom was placed into a sub-cell, and only cells for which the

matching integer value was true were searched.

Effectiveness of sub-grid over varying search radius
using a half mininum cell list

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

cellSidesPerRs

av
g

fr
ac

tio
n

of
 c

el
l i

n
m

in
 c

el
l l

is
t i

n
ra

ng
e

of

su
b

ce
lls

CPS=2

CPS=3

CPS=4

CPS=5

CPS=6

 vol half
sphere / vol half
min cell list

Effectiveness of sub-grid over varying search radius
using a half mininum cell list

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
cellSidesPerRs

av
g

fra
ct

io
n

of
 c

el
l i

n
m

in
 c

el
l l

is
t i

n
ra

ng
e

of

su
b

ce
lls

CPS=2

CPS=3
CPS=4

CPS=5

CPS=6

CPS=10
CPS=20

Figure 5.14. Sub-grid effectiveness over varying cellSidesPerRs.

Figure 5.14 shows the average fraction of cells in a half minimum cell list which are included

for randomly placed points. Results for several sub-grids were generated whereby each sub-

grid used a different number of cells per side. These results show that the sub-grid should be

38

most beneficial where the cell length is less than rc; which can often happen in MD

simulations where the length of the box will not divide evenly into rc. However if rc does

divide evenly, or almost evenly, into cell length, this approach in unlikely to be effective.

Using four to six cells per side in the sub-grid appears sensible, since any more than this only

gives negligible improvement, but will cost exponentially more storage. Note that the amount

of storage will be at least (number cells in cell list × number of cells per side in the subgrid3)

booleans. For example, a grid with a cellSidesPerRs value of 4, and 20 cells per side for the

sub-grid, would require approximately 4 million (514 × 203) integers.

Figure 5.15 illustrates how the sub-grid technique has the effect of smoothing bumps in

performance of an ordinary loaded cell list when the number of cells in the cell list steps up a

notch. Figure 5.16 shows that, using a sub-grid with just 4 cells per side can be quite effective

in these molecular dynamics simulations, but only for systems with over 3 atoms per cell.

Notice that results are poor when cellSidesPerRs is equal to one (Figure 5.14).

Sub-grid Performance

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2 2.5 3 3.5

cellSideDivRs

av
g

cl
oc

ks
 p

er
 it

er
at

io
n

1000 atoms with
subgrid

1000 atoms
(without subgrid)

2000 atoms with
subgrid

2000 atoms
(without subgrid)

3000 atoms with
subgrid

3000 atoms
(without subgrid)

numAtoms:
1000,2000,3000
rc: *
boxLen: 1
CPS: 10
timeStep: 0.004
timeStepsToExe: 10
useSubGrid: 1
subGCPS : 4

technique:
half_min_cell_list

Figure 5.15. Sub-grid technique performance.

39

Sub-grid performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3

cellSideDivRs

av
gT

ic
sP

er
It

1000 atoms
(1 atom per
cell)
2000 atoms
(2 atoms per
cell)
3000 atoms
(3 atoms per
cell)
10000 atoms
(10 atoms
per cell)

numAtoms:
1000,2000,3000
rc: 0.01-0.3
boxLen: 1
CPS: 10
timeStep: 0.004
timeStepsToExe:
10
useSubGrid: 1
subGCPS : 4
technique:
half_min_cell_list

Figure 5.16. Sub-grid technique improvements for different numbers of atoms per cell.

This author would recommend experimenting with the sub-grid technique if a cell list is

already established, there is a high number of atoms per cell and cellSidesPerRs is not ideal

(Figure 5.14). However, it is later shown that the optimal grid usually has a low number of

atoms per cell, making it advisable to avoid this idea altogether. This sub-grid approach could

work well in an application such as a computer game, whereby a fixed master grid is already

set up, but a series of small range searches with a relatively small fixed radius (eg: less than

half the cell length) are required.

5.10 Minimum Bounding Rectangles in Cells

Figure 5.17 shows that, for 1000 atoms, using MBRs in each cell was less efficient than using

minimum atom lists. Although, MBRs would occasionally allow the skipping of a cell which

was in range of the minimum atom list, the cost of building MBRs for each cell was greater.

40

Performance of variations on atom list

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5

cellSidesPerRs

av
gT

ic
sP

er
It

atoms=1000 -
min atom list

atoms=1000 -
min atom list
using MBRs

atoms=1000 -
cubic atom list

numAtoms: 1000
rc: 0.01-0.25
boxLen: 1
CPS: 10
timeStep: 0.01
timeStepsToExe: 20
useVerlet: 0

Figure 5.17. Performance of using MBRs and minimum atom list vs. cubic atom list.

More unexpected, however, was that a cubic atom list performed better than a minimum atom

list. In a minimum atom list, for each atom searched, each cell in the cubic range is first tested

to see if it is in range of the atom. The computational savings of using a minimum atom list

over a cell list can be approximated as follows:

comp savings = {(avgAtomsPerCell × time to check candidate pair × fraction cells eliminated)

– time to check cell against atom} × numAtoms

Checking a cell is outside of rc of an atom is relatively inexpensive. Nevertheless, if only a

small proportion of cells in the cubic atom list fall outside rc and there are not many atoms per

cell, then this cost can outweigh the potential savings.

Figure 5.18 shows the average fraction of cells in a cubic atom list which are omitted in the

case of a minimum atom list. For cellSidesPerRs=1 this is about 20%. However, since most

optimal simulations have only between 1 and 2 atoms per cell, it is cheaper to check these

atoms against the root atom, rather than each cell. Checking the distance between two atoms

is always cheaper than checking the minimum distance between an atom and a cell or MBR,

because the latter requires determining which side of the box is closest to the atom along each

dimension [27].

41

Average number of cells in cubic atom list skipped
if using a minimum cell list

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5 3 3.5

cellSidesPerRs

fr
ac

tio
n

of
 c

el
ls

 s
ki

pp
ed

0

1

2

3

4

5

6

7

8

9

av
er

ag
e

at
om

s
pe

r c
el

l

atoms=1000 - min
atom list eff

atoms=2000 - min
atom list eff

atoms=3000 - min
atom list eff

atoms=4000 - min
atom list eff

atoms=5000 - min
atom list eff

atomsPerCell

numAtoms: 1000-5000
rc: 0.01-0.25
boxLen: 1
CPS: 10
timeStep: 0.01
timeStepsToExe: 20
useVerlet: 0

Figure 5.18. Fraction of cells in cubic atom list skipped when using minimum atom list.

It is reasoned that, if a skewed data set were used, the number of atoms in each cell could be

used to decide how to process that cell. There would be a large number of atoms in certain

cells and none in others (Figure 3.5). If the number of atoms in a candidate cell is above some

threshold, it would be worthwhile to check if that cell was in range of the atom being

considered, because if the cell is out of range checking all atoms individually could be

avoided. If the number of atoms in the candidate cell was below the set threshold, checking

the few atoms individually would work out cheaper.

It should also be mentioned that the self-spatial join algorithm was implemented such that,

each cell was visited, and the range search executed for each atom in that cell. However, if a

high proportion of cells are empty, as is the case for skewed distribution, iterating over these

cells would result in wasted processor time. In this case it may be faster to execute range

searches for each atom in the order in which it appears in the atom array, despite the fact

searching atoms in order of cells exhibits better spatial locality.

42

5.11 Improving Spatial Locality: Single Atom Object vs. Separate Position

Array

An important implementation decision was whether to store location of particles in a separate

array from other atom attributes. Storing locations separately means more points should fit

into cache at a time, therefore it seems reasonable that cache hits would improve while

building neighbours lists. However, results showed that separating the positions resulted in

worse overall CPU performance (Figure 5.19). Seemingly, the step of moving atoms, which

involves adjusting each atom’s position based on accumulated force and velocity, would

result in many cache misses. If molecular dynamics testing functions were added to this

simulation, this cost would become even greater, because it is likely that a single atom’s

position and other attributes would be accessed in close succession. Having a single particle

object, containing (x,y,z) position, velocity, forces and perhaps a few other attributes, is not

only more object-oriented and easier to code, but exhibits the best spatial locality.

Separating atom positions into a separate array

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000 20000 25000

numAtoms

av
g

cl
oc

ks
 p

er
 it

Using a separate
array for atom
positions

Using a single array
of atom objects
(containing atom
positions)

numAtoms: *
rc: 1
boxLen: 8
CPS: 8
timeStep: 0.004
timeStepsToExe: 3
useVerlet: 0

Figure 5.19. Result of keeping atom location in a separate array.

43

5.12 Improving Spatial Locality using Space-filling Curves

This section tests the performance of using several of the space-filling curves described in

Section 2.10. A space-filling curve only needs to be generated once to establish an order for

the grid cells. Ideally, the number of cells per side is some practical value of 2n, or else the

pattern of the curve must be broken. Figure 5.20 shows the performance improvements of

Hilbert curve and Z-order curve compared to random atom distribution. The cost of

reordering the points is not included in this set of results. For up to 20,000 atoms, the

improvements were low – compared to a totally random order, Z-order performed 2.32%

better and Hilbert curve performed 2.45% better on average.

Space-filling curve performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5000 10000 15000 20000 25000

numAtoms

av
gT

ic
sP

er
It

Random
ordering

Z-order

Hilbert

numAtoms: *
rc: 1
boxLen: 8
CPS: 8
timeStep: 0.004
timeStepsToExe: 3
useVerlet: 0

technique:
 cubic_atom_list

Figure 5.20. Ordering atoms using space-filling curves vs. random ordering.

Later tests showed that when using much larger numbers of atoms, more than about 200,000

atoms, performance improvements gained using space filling curves were dramatic.

Compared to a random order, Z-order performed almost twice as fast and row ordering

performed almost as well. It is conjectured that this sizeable difference in performance was

due to virtual paging in the virtual memory system when simulations became too large to fit

completely in main memory. Unfortunately, it was also found that, in order to get accurate

results for these larger atom sets, numerous iterations were required, and to collect a more

extensive set of data would have taken many days.

44

The above simulations only measure time to build the neighbour list, and do not include the

time to re-order the atom list using the curve. Furthermore, the velocity of each particle was

set to almost zero so that atoms were not likely to float out of their original cells during the

simulation. If the velocity was higher, atoms would move from one cell to the next, and the

performance improvements would reduce faster because the atoms would quickly become out

of order again (Section 2.10). Note that, if a verlet neighbour list was used, rebuilds would

not occur every iteration. This means particles would move much further between rebuilds of

the neighbour list (many will have moved by as much as rv – rc/2) therefore performance

improvements would degrade rapidly. This would make it necessary to re-order the atom list

very frequently – possibly forcing a rebuild every second rebuild – in order to prevent the

order of atoms in the atom array degrading back to a random ordering. Determining the best

moments to reorder points in order to optimise performance is non-trivial, since the re-

ordering itself also bears a cost. Ultimately, the best time to reorder points will depend on the

velocity and pattern of movement of atoms. One possible method is to establish a threshold

value such that, when performance falls below this value, the list of atoms is re-ordered.

Two methods of re-ordering the atoms array were tested. The first simply made a temporary

copy of the entire atom array, and then copied atoms from the temporary copy back into the

original array, following the order of cells specified by the space-filling curve. The second

method used much less space, by first determining the order of atoms, and then selectively

swapping atoms in and out, until the entire array was in order. Results showed the first

method was almost twice as fast.

The time to re-order atoms scales linearly with the number of atoms. It was initially thought

this cost would be substantial; but results showed that re-ordering only took approximately

254 clock tics for 1 million atoms, and approximately 2.2 clock tics to re-order 10,000 atoms;

negligible compared to the total cost of each iteration. To put this in perspective, in the

simulation with 10,000 atoms in Figure 5.20, the performance improvement between random

ordering and Hilbert curve ordering was approximately 50 clock tics (2520 clock tics per

iteration × 2.45%). Note also that cost of iteration goes up about linearly with the average

number of neighbours per atom, and this value was only 4 (unrealistically low for MD

simulations) in the previous experiment. For such a low cost, re-ordering of atoms could be

done every time the neighbours list is rebuilt, but for a 2-5% performance increase, this author

believes that it is not worth the extra code and complexity which is required.

45

5.13 Choosing Optimal Cells per Side

One of the most effective ways to optimise the building of neighbour lists is to find the

optimal number of cells per side in the fixed grid. It was discovered that finding an optimal

value was deceptively non-trivial, and may vary significantly from one machine or compiler

to the next. Initially it was thought that setting up the grid such that there would be a certain

number of atoms per cell would help performance. Figure 5.21 shows results from a batch of

simulations using a cell list, whereby rc and the box length stayed constant. The optimal

number of average atoms per cell appears to increase almost linearly as the density of atoms

increases.

Peformance vs. avgAtomsPerCell using different numAtoms

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16
avgAtomsPerCell

av
gT

im
eP

er
It

5000 atoms
4000 atoms
3000 atoms
2000 atoms
1000 atoms

numAtoms:
 1000-5000
rc: 1
boxLen: 10
CPS: *
useVerlet: 0
cellLen: 2.5
numCells: 64
boxVol: 1000
avgAtomsPerCell: *
cellSidesPerRc: *

technique:
half_min_cell_list

Figure 5.21. Optimal atoms per cell for a cell list vs. average atoms per cell.

In the case where a cell list is used, cellSidesPerRs is a crucial value to measure, since it

dictates the volume of each search. Figure 5.22 shows the same results in Figure 5.21 graphed

against cellSidesPerRs. As the density of atoms increases, the optimal value of cellSidesPerRs

shifts from 1 towards 2.

46

Peformance vs. cellSidesPerRs for different numAtoms

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3

cellSidesPerRs

av
gT

ic
sP

er
It

5000 atoms

4000 atoms

3000 atoms

2000 atoms

1000 atoms

numAtoms:
 1000-5000
rc: 1
boxLen: 10
CPS: *
useVerlet: 0
cellLen: 2.5
numCells: 64
boxVol: 1000
avgAtomsPerCell:
*
cellSidesPerRc: *

technique:
half_min_cell_list

Figure 5.22. Performance costs vs. cellSidesPerRs using cell list.

Using an atom list instead of a cell list yielded much different results. Figure 5.23 shows that

the optimal number of cells per side for a given simulation for an atom list is much more

dependent on the number of atoms than the cell list (Figure 5.21). This shows that by setting

the number of cells per side so that the average number of atoms per cell is just above one

achieves a near-optimal value, for each of these simulations.

Performance vs. avgAtomsPerCell using a cubic atom list

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3 3.5

averageAtomsPerCell

av
gT

ic
sP

er
It

numAtoms=1000,r
c=1

numAtoms=2000,r
c=1

numAtoms=5000,r
c=1

numAtoms=10000,
rc=1

numAtoms:
 1000-10,000
rc: 1
boxLen: *
CPS: *
useVerlet: 0
density: 1

technique:
 cubic_atom_list

Figure 5.23. Performance vs. average atoms per cell using a cubic atom list.

47

As observed in previous sections, the performance trend for an atom list is much smoother

than for a cell list, and unlike the cell list, there is no penalty to change the number of cells per

side dynamically. For this reason, it may be beneficial for long simulations to change the

number of cells per side until the optimal value is found.

A simple algorithm was proposed to dynamically find the optimal cells per side for any given

simulation. At the start of the simulation, a decent first estimate of cell per side is set such that

it obtains (approximately) some default number of atoms per cell.

⎣ ⎦3 msPerCelldesiredAto numAtoms de cellsPerSi ÷=

Values of between 1 and 2 atoms per cell worked best in the tested simulations. As the

simulation executes, the number of clock tics elapsed during each rebuild of the neighbours

list was recorded. Only the algorithms responsible for placing atoms in cells and generating

the neighbours list were timed. After each rebuild the performance of the rebuild just

executed and the rebuild before that were compared, and then the number of cells per side

was incremented or decremented by one, depending on the result. If an improvement was

found, the number of cells per side was changed in the same direction as the previous change;

otherwise, it was changed in the opposite direction. When the number of cells reaches an

optimal value, the cells per side fluctuates up and back from that value, and when this occurs

it was assumed that the optimal number of cells per side had been found, and stayed fixed at

that value for the remainder of the simulation.

This worked well for large simulations, but for simulations with a small total number of

neighbours per iteration it was found that each rebuild only took a few tics, so accuracy was

poor. The solution implemented was simply to group together several rebuilds and calculate

an average number of tics. Rebuilds were only grouped and cells per side changed when the

total number of tics for rebuilds since the last change exceeded some specified threshold.

48

Performance vs. CPS using cubic atom list

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35
CPS

av
gT

ic
sP

er
It

numAtoms=1000,
rc=1
numAtoms=2000,
rc=1
numAtoms=5000,
rc=1
numAtoms=10000,
rc=1

numAtoms:
 1000-10,000
rc: 1
boxLen=
 numAtoms^1/3
CPS: *
useVerlet: 0
density: 1

technique:
 cubic_atom_list

local minimumactual
minimum

Figure 5.24. Finding the optimal cells per side using a cubic atom list.

10
00 40

00 70
00 10

00
0

13
00

0

16
00

0

19
00

0

1

5

0

5

10

15

20

25

30

optimalCPS

numAtomsrc

Optimal number of cells per side for an atom list 25-30
20-25
15-20
10-15
5-10
0-5

numAtoms: 1000-
20000
rc: 1-6
boxLen: * (const
density)
CPS: optimal for each
timeStep: 0.01
timeStepsElap: 20

density: 1
technique:
 half_cubic_atom_list

Figure 5.25. Optimal number of CPS for varying number of atoms and cutoff radius.

However, even with high accuracy this scheme did not necessarily work perfectly. As

demonstrated in Figure 5.24, a local maximum and minimum often formed a few increments

away from the actual minimum, and it is not fully understood why this is. If the algorithm

were to start on the wrong side of the local maximum and single increments were used, this

local minimum would be chosen as the optimal cells per side, instead of the actual minimum.

For this reason, choosing a starting point carefully is important, and it was found that

49

choosing about 1.5 atoms per side and accuracy threshold of several hundred tics, the

algorithm rarely found an incorrect optimal value.

Figure 5.25 shows the optimal number of cells per side has little dependence on the cutoff

radius. This set of results was generated using the optimal number of cells per side finding

algorithm described in this section. As expected, the optimal number of cells per side

increases roughly logarithmically as the number of atoms increases.

5.14 Choosing Optimal Verlet Radius

A larger verlet radius means atoms must travel a larger distance and therefore a longer time

before the neighbours list must be rebuilt (Figure 2.5). However, a larger verlet radius also

means the neighbours list will be longer and therefore each update will require checking more

neighbours, which is more expensive. Finding the optimal verlet radius is ultimately

dependent on finding an ideal balance between these two component expenses. In order to test

the performance of verlet radius, simulations were set up where all atoms had the same

constant fixed velocity, and the verlet radius was changed.

Performance of different verlet radius

0

50

100

150

200

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

rvDivRc

av
gI

ts
Pe

rN
ei

R
eb

ui
ld

0

5

10

15

20

25

30

nu
m

N
ei

gh
R

eb
ui

ld
s

avgTicsPerIt

avgItsPerNeiRebuild

avgItsPerNeiRebuid
Adjusted
numNeiRebuilds

numAtoms: 5000
rc: 2
boxLen: 17
CPS: 18
timeStep: 1
timeStepToExe:
1000
useVerlet: 1
rVerlet: 2-2.76
maxParticleVel =
0.001

Trend is affected due to same
number of neighbour rebuilds

Optimal
performance

Figure 5.26. Verlet performance with respect to finite number of rebuilds.

Figure 5.26 demonstrates that, whenever a small finite number of iterations occur, even if this

is as high as 1000, large anomalies can occur in the performance trend. This is due to the fact

that the same simulation run with two different verlet radii might both undergo the same

number of neighbour list rebuilds, but one may stop just after a rebuild is executed, and the

other (with a slightly smaller verlet radius) may stop before a rebuild is needed. Figure 5.26

50

illustrates these relationships. To allow more accurate results to be obtained, one method used

was to allow a fixed number of rebuilds to occur such that the simulation was stopped just

after it has been determined that another rebuild was needed. This method allows the average

number of iterations per rebuild to more accurately reflect results if the simulation were run

over an infinite timeframe, and therefore was used in many of the following result sets.

Performance vs. verlet radius

76

325
328

0

50

100

150

200

250

300

350

1

1.
05 1.
1

1.
15 1.
2

1.
25 1.
3

1.
35 1.
4

1.
45 1.
5

verlet radius / cutoff radius

av
gT

ic
sP

er
It

avgTicsPerIt

avgItsPerNeiRe
buildB

numAtoms: 5000
rc: 3
boxLen: 20
CPS: 20
timeStep: 0.01
timeStepsElap: 400
useVerlet: 1
rVerlet: 1.0-1.5

avgMaxVel = 0.0087
technique:
 half_cubic_atom_list

This line represents the same
simulation done with no verlet radius -
only marginally worse than using a
verlet radius of 1 (whereby
displacements would be checked
every timestep and an extra rebuild
would obviously be needed).

Figure 5.27. Performance of using different verlet radius.

Figure 5.27 shows that the performance of simulations exhibits a smooth trend as the verlet

radius is increased. In this simulation the optimal verlet radius is approximately 1.12 times the

cutoff radius and is over 4 times faster than executing the simulation without using a verlet

radius.

51

Breakdown of costs for different verlet radius

574

3.44

0

200

400

600

800

1000

1200

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
verlet radius / cutoff radius (rvDivRc)

av
gT

ic
sP

er
It

avgTicsPerIt

 BUILD

MOVE

REPOS

CHECK

UPDATEV

numAtoms: 10000
rc: 5
boxLen: 20
CPS: 10
timeStep: 0.01
timeStepsElap: 400
useVerlet: 1
rVerlet: 5.01-6.95

technique:
half_cubic_atom_list

Figure 5.28. Performance of using different verlet radius.

Figure 5.28 shows similar results for a simulation with 10000 atoms, and also shows the

breakdown of total costs per iteration as the verlet radius is increased. As rvDivRc and

therefore the number of iterations between rebuilds increase linearly, the total number and

cost of rebuilding decreases rapidly, and the cost of updating the verlet list increases linearly.

Significantly, the cost of checking atom displacements to check if the verlet list needs

updating (Section 3.6) is negligible; only 0.6% of the total cost per iteration for the optimal

verlet radius in the simulation shown.

Optimal verlet performance for different particle velocities

84 97
107 119

0

50

100

150

200

250

300

350

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

verlet radius / cutoff radius

av
gT

ic
sP

er
It

0

50000

100000

150000

200000

250000

nu
m

be
r

of
 v

er
le

t n
ei

gh
bo

ur
s

maxVel=0.02

maxVel=0.04

maxVel=0.06

maxVel=0.08

avgNeiSize

numAtoms: 1000
rc: 1
boxLen: 3
CPS: 9
timeStep: 1
timeStepsElap: 200
useVerlet: 1
rVerlet: *
density: 37

maxVel: 0.002-0.008
technique:
 half_cubic_atom_list

Figure 5.29. Optimal performances for different particle velocities.

52

Figure 5.29 shows how the optimal verlet radius and performance improvements are

dependent on the maximum velocity of particles each timestep. The faster particles move, the

worse the optimal performance and greater the optimal verlet radius.

Since the trend of performance against rcDivRc was smooth in all recorded results, a similar

algorithm to the one described in Section 5.13 was proposed to find the optimal verlet radius

in any given simulation. At the beginning of the simulation, the initial starting value of rv was

set to 1.2 times rc, since this appears to be a common choice for a verlet radius [11]. A more

sophisticated scheme might also take the starting velocities of particles into account.

The number of clock tics elapsed during iteration was recorded, for both rebuilds and verlet

updates. Prior to each neighbour rebuild, the average tics per iteration starting from the

previous rebuild was calculated as the number of tics for the previous rebuild plus all

subsequent verlet updates, divided by the number of iterations this includes.

i.e.: b ItSinceavgTicsPer
1 ldSinceRebuinumUpdates

pdatesentVerletUForSubsequ totalTics vRebuildticsForPreRe
+

+
=

A history of these times was kept, and the verlet radius was changed up or down depending if

avgTicsPerItSinceReb for the set of iterations just completed was an improvement on the

avgTicsPerItSinceReb for the previous set. Each iteration, the verlet radius was changed up or

down a default increment value of 0.01 times the value of rc. If the performance settled at a

particular point (determined when rv fluctuates up one then down one from some value) the

increment value was reduced by half, so that, eventually, a more precise value for the optimal

verlet radius would be found.

However, most of these fluid simulations are dynamic in nature, and particles often speed up

or slow down. Often particles start with negligible velocity, and then gradually speed up to

some state of equilibrium and in other simulations, the user may wish to dynamically heat or

freeze the particles to see the effects. For this reason, it made sense to not allow rv to settle

towards or stop at one given point, but instead be allowed to change up and down throughout

the simulation. There was little investigation into an ideal increment value, but ideally the

simulation should not fluctuate far enough from the optimal rv to have any significant

influence on performance, nor should it change so slowly that it cannot respond to changes of

state within the system. An increment value of 0.01 performed quite well. Figure 5.30 shows

the performance obtained by using this algorithm over 1400 timesteps, and shows the order in

53

which rvDivRc was changed. Notice that the performance obtained using the algorithm was

only slightly worse than choosing the optimal rvDivRc value outright.

Finding the optimal verlet radius

0

50

100

150

200

250

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

rvDivRc

av
gT

ic
sP

er
It

Result obtained using algorithm
for 1400 timesteps - only slighly
w orse than optimal

numAtoms: 5000
rc: 2
boxLen: 17
CPS: 18
timeStep: 1
timeStepsToExe: 50
useVerlet: 100
rVerlet: 2-2.76

maxParticleVel = 0.001
technique:
half_cubic_atom_list

3
Order rvDivRc is changed
using algorithm

1

4
15

16
3 17 18

2

Starting value of
verlet radius w as
1.2*cutoff radius

First "f luctuation" detected, three possilbe
options at this point are to:
1) stop changing rc.
2) keep going, but decrease rate of change per
iteration to obtain more accurate optimal value.
3) keep going at same rate, in case particles
change velocity. << chosen option

…
3

Figure 5.30. Results of simple optimal verlet radius algorithm.

Ideally, this algorithm for finding the optimal verlet radius and the algorithm for finding the

optimal number of cells per side are complementarity. The use of both algorithms is not tested

thoroughly enough to present results, but note that the algorithms may affect the effectiveness

of each other. The optimal verlet radius finding algorithm changes rvDivRc just prior to each

rebuild, while the optimal cells per side find algorithm measures the performance of the

rebuild, and changes the number of cells per side after the rebuild. A potential problem with

this is that the search radius will be changed slightly each rebuild, therefore affecting the size

of the neighbour list and changing the optimal value for the number of cells per side. This

conflict could easily cause one to select an incorrect value. Ideally, the two algorithms would

have awareness of each other and interact intelligently. One simple idea is to let the

algorithms take turns such that the verlet radius settles at a fixed value, then the number of

cells per side is adjusted, then the verlet radius adjusts to reflect this, and so on. The author

believes that anything more sophisticated than this may be unwarranted and only slight

performance improvements may result.

54

5.15 Selective Checking of Verlet Neighbours

This section reports on the techniques to reduce the cost of checking neighbours proposed in

Section 3.6. As shown in Figure 5.28 the time to check displacement is small, and ranges

between about 0.3% and 0.8% of the total cost for most simulations tested during this thesis.

For this reason, the idea of checking displacement at safe intervals is not worthwhile.

However, the time to update the verlet list is large; taking 40% of the total cost for the optimal

simulation in Figure 5.28. Figure 5.31 graphs the fractNeiOutsideRc (Definition 14) for

different values of rv. These values are considerable, for instance if rv is 1.1 times rc then 25%

of neighbours are outside rc, and if rv is 1.2 times rc then 42% of neighbours are outside rc.

Number of atoms in shell outside of cutoff radius

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

1 1.1 1.2 1.3 1.4

verlet radius / cutoff radius

pe
rc

en
t

Percentage
increase of
volume from
cutoff sphere

Fract Atoms
outside rc

Figure 5.31. Fraction of atoms not in range for different verlet radius.

Figure 5.32 shows performance results for the two techniques for selective checking (Section

3.6) using the Lennard-Jones interaction model. The average cost of updating the list itself is

also shown. The performance improvement of the selective checking using maximum velocity

technique is minimal; but, selective checking using the displacement of individual atoms

proved quite successful. Most interestingly, this technique reduces the gradient of the cost of

updating the neighbour list as the verlet radius is increased. For this simulation, the

performance improvement offered by selective checking using displacement of atoms each

timestep improved performance by about 7%.

55

Performance improvement of selective checking

19.19 18.82

17.85

0

5

10

15

20

25

30

35

40

1 1.1 1.2 1.3 1.4 1.5
rvDivRc

av
gT

ic
sP

er
It

no check

maxVel check

displacement check

no check

maxVel check

displacement check

numAtoms: 1000
rc: 2
boxLen: 10
CPS: 9
timeStep: 0.001
timeStepsElap: 1000
useVerlet: 1
rVerlet: *
maxVel: 4

technique:
half_cubic_atom_list

cost of updating list

total cost per iteratio

Figure 5.32. Performance improvement using selective checking of verlet neighbours.

Performance improvement of selective checking

0

5

10

15

20

25

30

35

40

1 1.1 1.2 1.3 1.4 1.5
rvDivRc

av
gT

ic
sP

er
It

maxVel=2, none

maxVel=2, displacement

maxVel=8, none

maxVel=8, displacement

maxVel=14, no selective
checking
maxVel=14, displacement
selective checking

numAtoms: 1000
rc: 2
boxLen: 10
CPS: 9
timeStep: 0.001
timeStepsElap: 1000
useVerlet: 1
rVerlet: *
maxVel: 2,8&14

Figure 5.33. Improvements of selective checking at different atom velocities.

56

Optimal performance of selective checking vs. maxVel

0

5

10

15

20

25

30

35

0 5 10 15 20
maximum velocity of atoms

av
gT

ic
sP

er
It

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

rv
D

iv
R

c

avgTicsPerIt, none

avgTicsPerIt,
maxVel
avgTicsPerIt,
displacement
rcDivRv, none

rcDivRv, maxVel

rcDivRv,
displacement

numAtoms: 1000
rc: 2
boxLen: 10
CPS: 9
timeStep: 0.001
timeStepsElap: 1000
useVerlet: 1
rVerlet: optimal
maxVel: *

Figure 5.34. Optimal performance of selective checking of verlet neighbours.

Figure 5.33 shows similar results for three more sets of simulations, each with different

particle velocities. Notice that the optimal performance of the selective checking of

neighbours using displacement technique usually has a higher optimal rvDivRc value than the

normal technique whereby the distance of all neighbours is computed every timestep. This

relationship is also shown in Figure 5.34, which only graphs the results for the optimal

performance of each technique for a range of different particle velocities. The average

performance improvement over all these simulations was 1.8% for the maximum velocity

checking technique, and 8.3% for the displacement checking technique. Moreover, another

advantage is that, if non-optimal verlet radius is chosen, the loss in performance is not as great

if the latter technique is used (Figure 5.33), since the curve increases slower. This author

would recommend exploring this technique in future implementations of a molecular

dynamics simulation, especially since it is not complicated to code (Figure 3.7). Note though,

that improvements are liable to also depend on the size of the atom list compared to the size

of the neighbour list.

5.16 Choosing Cutoff Radius

Choosing an appropriate cutoff radius is an important decision to consider in molecular

dynamics simulations. The smaller the cutoff radius, the faster the simulation rate, but the

worse the accuracy of results. Ideally, cutoff radius is large enough that only atoms far

57

enough apart to have only negligible influence on each other are out of range (Figure 2.1). It

is claimed that 2.5σ and 3.2σ are two most commonly used cutoff radius values, where σ is a

characteristic distance in pair potential which fits the pair potential curve for a specific

material [8].

Figure 5.35 shows the accuracy and performance relationship as cutoff radius is increased. A

very small timestep was used, so timestep would have negligible affect on accuracy. The

chosen measure of inaccuracy used in the following experiments was the absolute deviation

of the position and velocity of all particles, compared to an equivalent control simulation

using a cutoff radius of 5 units. The experiment and control were run over the same time

frame and deviations averaged over all particles.

Performance vs. accuracy at different cutoff radius

0

10

20

30

40

50

60

70

80

90

100

5 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2

cutoff radius

av
g

tic
s

pe
r

ite
ra

tio
n

0

0.005

0.01

0.015

0.02

0.025

0.03

av
g

de
vi

at
io

n
co

m
pa

re
d

to
 ti

m
es

te
p

0.
00

2

avgTicsPerIt

avgVelDiff

avgPosDiff

numAtoms: 500
rc: *
boxLen: 15.9
CPS: 10
timeStep: 0.001
timeStepsElap:
200
useVerlet: 0

Figure 5.35. Performance and accuracy vs. cutoff radius.

58

Performance vs. cutoff sphere volume

0

10

20

30

40

50

60

70

80

90

5 4.7 4.4 4.1 3.8 3.5 3.2 2.9 2.6 2.3 2 1.7 1.4 1.1 0.8 0.5

cutoff radius

av
g

tic
s

pe
r i

te
ra

tio
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

vo
lu

m
e

cu
to

ff
sp

he
re

 c
om

pa
re

d
to

 ra
di

us
=5

avgTicsPerIt

volCompare

numAtoms: 500
rc: *
boxLen: 15.9
CPS: 10
timeStep: 0.001
timeStepsElap: 200
useVerlet: 0

Figure 5.36. Performance-volume relationship

Accuracy vs. pair potential force for different cutoff radius

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

5 4.7 4.4 4.1 3.8 3.5 3.2 2.9 2.6 2.3 2 1.7 1.4 1.1 0.8 0.5

cutoff radius

at
tr

ac
tiv

e
fo

rc
e

0

0.05

0.1

0.15

0.2

0.25

0.3

av
g

de
vi

at
io

n
co

m
pa

re
d

to
 ti

m
es

te
p

0.
00

2

force at rc

avgVelDiff

avgPosDiff

numAtoms: 500
rc: *
boxLen: 15.9
CPS: 10
timeStep: 0.001
timeStepsElap: 200
useVerlet: 0

Figure 5.37. Accuracy vs. pair potential force.

Notice performance improves by a rate of approximately (4/3 π rc
3), as expected (Figure

5.36). The rate of error increases exponentially. In each iteration, atoms may only deviate a

small distance from where they are located in the control experiment, but this affects all future

force calculations, thus the error compounds quickly. Figure 5.37 shows the rate of error

graphed against plotted Lennard-Jones pair potential forces. At a radius of about 2.3 the

59

deviation in velocities is no longer negligible, and starts increasing faster, roughly in

proportion to the changes in attractive force. At the point at which forces start to repel,

difference in velocity stops because if the simulation was run any longer, the particles would

get so close to each other they would repel with such a force that the program terminates due

to arithmetic overflow. It is recommended that a good molecular dynamics simulation

program should check any cutoff radius specified by the user, calculate the force at that

distance of separation, and warn the user if that cutoff radius is likely to result in very poor

results or even a program crash.

5.17 Choosing Timestep

Ideally, timestep is as small as possible. Molecular dynamics is always an approximate

science where the longer the timestep, the less accurate the results. In the worse case scenario,

the timestep will allow atoms to move too far between single iterations, allowing atoms to get

closer together than they ever could in a real liquid. This usually causes an incorrect “chain

reaction”, whereby two close particles repel at a much faster speed than normal causing them

to bump even closer other atoms, which are repelled at an even greater velocity. This effect

compounds until all atom are moving at unrealistic speeds and eventually arithmetic

overflows will occur.

Performance vs. accuracy using different timestep

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.0
01

0.0
06

0.0
11

0.0
16

0.0
21

0.0
26

0.0
31

0.0
36

0.0
41

0.0
46

0.0
51

0.0
56

0.0
61

0.0
66

0.0
71

0.0
76

0.0
81

0.0
86

0.0
91

0.0
96

timestep

to
ta

l t
ic

s
ov

er
 s

im
ul

at
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

av
g

de
vi

at
io

n
co

m
pa

re
d

to
 ti

m
es

te
p

0.
00

2

totTics

avgVelDiff

numAtoms: 500
rc: 5
boxLen: 15.9
CPS: 10
timeStep:
 0.001-0.010
timeStepsElap:
 174-200
useVerlet: 0
technique:

At approximately this timestep, a
few particles w ere allow ed to move
close enough to repel strongly, then
move even closer to other particles.
Beyond this point, velocity shoots
upw ards so fast atoms cannot be
w rapped around into cells and the
program crashes.

Figure 5.38. Performance and accuracy vs. timestep.

60

In Figure 5.38, several different timestep simulations were run and compared against an

equivalent control simulation using a small timestep of 0.001. Each simulation is run through

a fixed timeframe (0.480 seconds). A larger timestep requires fewer iterations and therefore

the overall performance as total number of tics (not tics per iteration) should improve roughly

proportional with the increase in timestep; which it does. The results also show increasing

timestep decreases accuracy roughly linearly, however, at a certain point when the particles

get too close together, an incorrect chain reaction occurs, and deviations immediately shoot

towards infinity (which is difficult to depict in the graphs). In practice, it pays to be wary of

this, and warn or prevent the user from entering a timestep which is too large. Ultimately,

finding an appropriate balance between performance and accuracy depends on the

requirements of the simulation.

Figure 5.39 shows how performance degrades over time. A simulation using a timestep of

0.01 was compared to a control simulation using 0.0001, and deviations compared at constant

timeframe intervals. The average velocity of all particles in the tested simulation is also

shown. In the given simulation (Figure 5.39), atoms start off with random velocities, speed up

slightly (as shown by the blue line), and eventually the fluid reaches a fairly constant state

whereby atoms are vibrating about, but the total entropy of the system remains about constant.

Results show that the deviation in total velocities of particles starts off slowly increasing, and

then increases faster, but eventually this difference in velocity approaches some constant. In

other words, in the simulation with the larger timestep, particles speed up slightly faster and

will, on average, remain travelling slightly faster for the whole experiment. Meanwhile, the

deviation of particles’ positions is also slow to start and shows correlations with the velocity

trend. Eventually, just after the deviation in velocity settles down, the trend of total position

deviation appears to become linear, but then the rate of increase reduces slightly. It is

conjectured that this is due to the fact particles are not travelling as straight at this time, and

many particles even wobble back over their own paths.

In summary, the choice of timestep has a big impact on accuracy of simulations. It is

recommended that, to avoid the incorrect “chain reaction” phenomena, if two atoms get

unrealistically close, the user should be warned that the timestep should be decreased and be

given the option to terminate the program since the results are already effectively useless. A

more advanced program might provide warnings if the user enters an unrealistically large

timestep before the simulation is allowed to start.

61

Degraded accuracy over time

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

timeStepsElap

av
g

de
vi

at
io

n
co

m
pa

re
d

to
 s

am
e

tim
e

du
ra

tio
n

us
in

g
tim

es
te

p
0.

00
1

avgVelDif f

avgPosDiff

avgVel

numAtoms: 500
rc: 5
boxLen: 15.9
CPS: 10
timeStep: 0.01
timeStepsElap:
 100-2800
useVerlet: 0

Degraded accuracy over time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 100 200 300 400 500 600

timeStepsElap

av
g

de
vi

at
io

n
co

m
pa

re
d

to
 s

am
e

tim
e

du
ra

tio
n

us
in

g
tim

es
te

p
0.

00
1

avgVelDiff

avgPosDiff

avgVel

numAtoms: 500
rc: 5
boxLen: 15.9
CPS: 10
timeStep: 0.01
timeStepsElap:
 10-570
useVerlet: 0

Figure 5.39. Effect of degrading accuracy over time.

62

6 Conclusion

This chapter presents a summary of results and suggests direction for further work. Many of

the results provide examples of traditional trade-offs between computation time and storage

space and also the need for temporal and spatial locality to increase cache effectiveness.

6.1 Summary of Results

In this thesis, several existing and proposed methods for optimising a common molecular

dynamics problem were evaluated. It was established that building a neighbours list occupied

the bulk of processor time. Improving the performance of this step was the focus of most of

this work. Arguably the most significant discovery of this thesis was that half range searches

yielded significant performance improvements over the traditional full range search

technique, especially where the search radius spanned a large number of cell sides. The value

of the cutoff radius divided by the length of the cell side, denoted cellSidesPerRs, proved to

be a critical value throughout the thesis.

Results demonstrated that loading a minimum cell list was much more effective than re-

calculating adjacent cells each iteration, although the former approach can consume a large

amount of storage and take a significant amount of time to load at the start of the simulation.

It was found the loaded cell list technique often performed slightly better than the atom list

technique. However the atom list technique requires no loading phase and the performance

when varying the number of cells per side exhibited a much smoother trend.

Several additional optimisation methods were attempted with limited success. A technique for

early elimination of neighbours was investigated, as was a technique for using integer

arithmetic instead of floating point arithmetic in construction of neighbour lists, but both

methods resulted in worse performance. Of the three types of space-filling curves

investigated, the most effective was the Hilbert curve, although all curves yielded much

smaller improvements (compared to a completely random ordering of atoms) than expected,

unless the number of atoms was in the hundreds of thousands. It was also found that using a

single atom object to contain all atom data exhibited significantly better spatial locality and

performance than creating a separate array for the position of atoms.

63

A technique of using sub-grids to refine the searching of a loaded cell list proved effective,

but only if the number of atoms per cell was high, as did a minimum atom list technique and

the use of minimum bounding rectangles in cells. However, a significant discovery was that

atom list technique typically performed best when the number of cells per side was adjusted

so that there were only one or two atoms per cell. For a cell list, the optimal number of cells

per side was very much dependent on cellSidesPerRs, since this dictated the number of cells

in the minimum cell list, rather than the average number of atoms per cell.

The author speculates that, a cubic atom list is preferable to a loaded minimum cell list,

because it is easy to program and allows the dynamic changing of the number of cells per

side, or even the cutoff radius itself, with minimal affect on performance. The thesis also

analysed the optimal number of cells per side and proposed an algorithm able to dynamically

find the optimal number of cells per side for an atom list. This algorithm was found to yield

close to optimal performance. An almost identical algorithm was proposed to find the optimal

verlet radius to use in the verlet neighbour list technique. As expected, the verlet list

technique, yielded significant performance improvement compared to rebuilding each

iteration, depending on the velocity of particles. Further performance improvements were

obtained by a new method of selective checking of the neighbours list using the displacement

of atoms, which significantly reduces the cost of updating the verlet list.

Several of the methods presented could be used in a wide range of applications which execute

spatial searches, not just molecular dynamics simulations. For those implementing molecular

dynamic simulations, this author strongly recommends using the half range search technique

(rather than a full range search) and using an atom list technique (rather than the traditional

cell list). Using the verlet neighbours technique and the selective checking of the neighbour

list using atom displacements technique is also advisable. Space-filling curves may also yield

large improvement, but these improvements are likely small and not worth the effort of the

extra code and complexity unless simulating vast numbers of particles. Moreover, finding the

optimal number of cells per side and verlet radius is critical to optimising these simulations,

so using an algorithm to dynamically find these values (or at least provide a good estimate),

similar to the algorithms described, is essential. By implementing all these complimentary

techniques, the performance of any spatial join simulations can be greatly improved, and

better than halved. Optimisation of this magnitude is surely welcome in large molecular

dynamics simulations which often take many days to process.

64

6.2 Future Work

The particular molecular dynamics fluid problem investigated is well understood, but there

remains an opportunity for much future work on detailed analysing of and optimising the

performance of such simulations. This is important, since similar problems of range searches

are used in many scientific applications and computer experiments, and scientists are

constantly trying to increase the number of particles and amount of data in such experiments.

Due to time constraints, no results for simulations for more than 200 thousand atoms were

presented, but scientists are naturally interested in making larger simulations with many

millions of particles.

One of the main foci of future research will be a better analysis of finding the optimal

parameters for a given simulation, including more advanced means of finding the optimal

number of cells per side and verlet radius for certain simulations. Some suggestion to extend

this work are listed below:

o Investigate various algorithms to find the minimum point on the performance curve

(representing the optimal number of cells per side or verlet radius). As observed, the

simple algorithms proposed and implemented in this thesis have a high likelihood of

resolving to a local minimum.

o Investigate ways to find the optimal verlet radius and number of cells per side

simultaneously. The two current algorithms are not designed to co-operate in any way,

and the effectiveness of running both at once has not been properly tested.

o Investigate the use of Hidden Markov models to determine best number of cells per

side, given the main input parameters.

o Experiment with the performance of various techniques in this thesis using different

compilers and platforms. Currently performance was tested using a single programming

language and a single machine, so it should be especially interesting to test

performance differences between different languages.

o Thoroughly test the performance of space-filling curves for larger numbers of atoms

travelling at different velocities, with and without using a verlet radius. This author

believes the curves should yield significant improvements for two-dimensional

simulations, but had insufficient time to test this theory. Furthermore, if the dataset

were too large to fit in memory and instead resided on disk, space-filling curves would

be expected yield huge performance improvements.

o Testing of the accuracy of various statistical functions for different timestep and cutoff

radius values. This thesis compared accuracy of simulations by comparing the position

65

and velocity of atoms; but it would be interesting to see performance relationships by

comparing temperature, energy, and numerous other measurements, since these are the

important outputs from molecular dynamics simulations.

o Investigate the usefulness of techniques proposed in this thesis for skewed data sets,

particularly use of sub-grids minimum bounding rectangles.

o Investigate the performance of techniques proposed in this thesis using other data

structures such as R-trees, quad-trees and various types of grid files.

o Write a more comprehensive guide to the performance benefits of the half range search.

o Adapt cell lists so that some cells are always searched exhaustively, but certain outer

cells (or their MBRs) in the adjacent cell list are first checked to determine if they are

within range of each atom. This technique is more sophisticated than checking every

cell, and could be implemented by splitting the cell list into two separate lists. However

this approach is still only likely to yield improvements in simulations with high number

of atoms per cell, since it is cheaper to compare atoms to each other than calculate the

minimum distance from an atom to a cell.

This work is most likely to be continued by future students in TOMSK [19], if not by this

author.

66

7 Appendices

Appendix A: Common C++ Data Types

Table 4 shows some of the most commonly used data types in C++ [21]. The int data type is

system dependent, but on most systems, including the tested machine, is equivalent to

__int16.
Data-type

name(s)
Bytes

Decimal

digits
Exponent range Range of Values

int * * *
System dependent, but usually

equivalent to __int16

__int16 2 5 N/A –32,768 to 32,767

long

(__int32)
4 10 N/A

–2,147,483,648 to

2,147,483,647

__int64 8 19 N/A
–9,223,372,036,854,775,808

to 9,223,372,036,854,775,807

float 4 7 38 to 38 3.4E +/- 38

double * 8 15 -308 to 308 1.7E +/- 308

long double 10 19 -4932 to 4932 1.2E +/- 4932

bool 1 N/A N/A false or true

Table 4: Relevant C++ data types ranges.

Appendix B: Performance of Various Operations on Chosen Platform

The following results were used to aid implementation decisions during the coding of the

simulation. Results were obtained by writing a simple testing platform which timed and

executed a single operation numerous times (500 million or more) in a loop, and compared

this with a baseline of running the same loop with no operation, in order to obtain a rough

average number of clock tics for the given operation or method.

 in loopiterationsnumber of

empty looped during tics elapsopccupied lod during otics elape oner operatiavg tics p −
=

Results were outputted to a CSV file and analysed in Excel, since this method was found

easier than using a profiler. Tests were run on the same test computer; 2.6 GHz Pentium 4

machine with 512 MB of RAM and 512kB of L2 cache; using the default debug configuration

mode so loops would run exactly as coded.

67

Figure 7.1 shows the speed of basic arithmetic operations for the common C++ data types.

Results show multiplication, addition and multination is very cheap for long, int and float, but

more expensive for __int64 and more expensive again for double. Division is expensive for

all data types, but actually more so for the integer-based data types, presumably because they

must be converted to floating-point numbers before division occurs. Figure 7.2 shows some of

the many other operations which were tested. If statements were inexpensive, so too is the

right shift operation, which is approximately four times less expensive than division using

doubles, depending on it’s configuration. Right shift only works for integer-based data types.

Certain typecasting operations, such as converting long to a __int64 were more expensive

than expected.

Finally, Figure 7.3 shows some common functions from the C++ maths library. The sqrt()

operation was approximately 64 times more expensive than double multiplication. Results

also show that using the pow() function is inadvisable if it’s possible to multiply the numbers

by themselves instead (if trying to obtain the square or cube of a number for instance).

Interestingly, the fmod() operation, which performs the modulus operation for two floating

point inputs, was more expensive to call than an equivalent function fMod() written as a

simple inline function with if statements. Such speedup can easily add up, for example the

modulus operation was called frequently to put any atoms which had wandered outside the

box boundaries back into the box.

Speed of basic operations

0.00E+00 5.00E-06 1.00E-05 1.50E-05 2.00E-05

double = double/double

double = double*double

double = double+double

double = double-double

f loat = f loat/f loat

f loat = f loat*f loat

f loat = f loat+float

f loat = f loat-f loat

int = int/int

int = int*int

int = int+int

int = int-int

long = long/long

long = long*long

long = long+long

long = long-long

int64 = int64/int64

int64 = int64*int64

int64 = int64+int64

int64 = int64-int64

op
er

at
on

avg # clocks

longs

ints

f loats

doubles

__int64

4.38E-05

Figure 7.1. Speed of basic arithmetic operations.

68

Speed of various other operations

0.0E+00 2.0E-06 4.0E-06 6.0E-06 8.0E-06 1.0E-05 1.2E-05 1.4E-05

if(i1>i2) ;

if(d1>d2) ;

int = long>>int

int = int64>>int

int64 = int64>>int

double = double/double

__int64 = long

op
er

at
on

avg clock tics

Figure 7.2. Speed of other relevant operations.

Speed of various maths functions used

0.00045704

0.00045914

0.00048438

0.0001736

7.51E-06

4.53E-05

1.26E-04

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

d1 = log(d2);

d1=sqrt(d2)

d1=pow (d2,1.0/3.0);

d1=pow (d2,2);

d1=d2*d2;

fMod(d1,d2)

fmod(d1,d2)

op
er

at
on

avg clock tics* - Implemented as simple inline functions

*

Results averaged over several representative imput values

Figure 7.3. Speed of relevant functions.

Appendix C: Choice of Data-type: Double or Long

In the initial code, the doubles were used to store all atom positions, whereby each coordinate

would be between 0 and boxLen. An alternate idea was to store atom positions as longs,

whereby each coordinate would be between 0 and some large long value l_boxLen, because

integer-based arithmetic is characteristically faster than floating point arithmetic (Figure 7.1).

Division is an expensive operation for all data-types; however the bitwise right shift operation

(written as “>>”), which only works for integer-based data-types, can be used to divide a

number by any exponent of two and is much cheaper (Figure 7.2).

 v>>i ≡ v/2i, where v and i are both integers

69

Indexing an atom to a cell is a frequent operation, and requires the atoms position to be

divided by the cell length for each axis. If a long is used, the same results can be achieved by

right shifting the coordinate so that only the bits representing the index position for the cell

remain. Initially it was thought this technique would limit the values of cell length and cells

per side which could be used in right shift, however it was discovered that, by carefully

configuring l_boxLen and using several other parameters, this approach can work for any

number of cells per side. Table 5 shows how parameters were set up.

Variable Name Value Assigned Data Type Purpose/Description

BIT_MAX_LONG 32 integer

maxLong 2BIT_MAX_LONG integer Represents the maximum possible value long can be

set to (Table 4).

bitsCPS ⎡ log2 CPS ⎤ integer Represents the minimum number of bits needed to

represent the CPS.

rShiftAtomToCell bitsMaxLong – bitsCPS integer Is the number of bits which will be used to represent

values between 0 and cellLen. By right shifting an

atom’s position by this amount, only the bits

representing the cell’s index along that dimension

will remain.

l_cellLen 2rShiftAtomToCell long Represents the cell length as a long.

l_boxLen 2rShiftAtomToCell × CPS long Becomes the total box length as a long.

longToDouble boxLen/l_boxLen double Used to covert any doubles to longs when needed. ie:

atomPosDouble = atomPosLong × longToDouble

doubleToLong l_boxLen/boxLen double Opposite of above.

Table 5. Parameters used to allow right shift operation.

To establish the cell an atom belongs to can now be done by calling:
 cellIndexaxis = atomPosLongaxis >> rShiftAtomToCell

This technique was ideal for placing atoms into cells; however, calculating distances was now

a problem. In order to calculate distance squared, the distance along each axis must be

squared and all these added together. This is straightforward for floating-point numbers which

use exponents, but for integer-based numbers, squaring an integer means the number of bits

required to represent that number is effectively doubled, meaning a long had to be typecast to

an __int64 (Table 4) in order to safely square its value. Accuracy is an extremely important

factor in molecular dynamics, and notice in Table 4 that a long only has 10 decimal digits of

accuracy whereas a double has 15 significant figures.

Using the proposed methods of longs was tested, but although the building of atom lists

became faster, the cost of comparing distances did not improve, and overall performance was

about 5% worse in the results collected. A possible method would be to use both doubles and

integers to store atoms’ positions, to gain the advantage of both data-types, but this would

70

result in further code complexity and storage requirements. The user of a molecular dynamics

simulation will naturally want any results to be outputted as floating-point numbers, not

longs, meaning any performance improvements provided by integer-based data types would

probably be overshadowed by the need to frequently convert one data-type to the other

(possibly loosing accuracy in the process). The recommendation of this thesis is to keep

things simple by sticking with doubles or floats if implementing molecular dynamics

simulations. Possibly for other applications the use of longs as described above would yield

more substantial advantages.

Appendix D: Efficient Generation of Random Directions in Three-Dimensional

Space

Generating a random direction for two dimensions is a simple matter of generating a single

random number between 0 and 180 degrees. However, generating a non-biased random

direction for three dimensions using angles is more complicated, so the author proposed and

used a simple approach to solve the problem. A random point in cube was generated by

generating a random coordinate between -1 and 1 along each axis. This point was then

checked to see if it was within a distance of 1 from the origin. If so, the vector from the origin

to the point provided a random direction, if not, the process of generating points would repeat

until successful. Since a sphere occupies 52% of its bounding cube, about one in every two

attempts will be successful. This technique was used in the generation of random velocities

and random position offsets at the start of each simulation.

71

Bibliography

1. D. J. Abel and M. D. M., A comparative analysis of some two-dimensional orderings, Int. J.

Geograph. Inf. Syst 4 (1), p.21-31 (1990).
2. M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford University Press,

New York, 1987.
3. J. E. Barnes and P. Hut, A hierarchical o(nlogn) force calculation algorithm, Nature 324 (4),

p.446-449 (1986).
4. J. L. Bentley and J. H. Friedman, Data structures for range searching, ACM Computing

Surveys (CSUR) archive 11 (4), p.397-409 (1979).
5. G. Blelloch and G. Narlikar, A practical comparison of n-body algorithms, In Parallel

Algorithms, Series in Discrete Mathematics and Theoretical Computer Science. (1997).
6. E. Chavez, G. Navarro, R. Baeza-Yates and J. Marroquin, Searching in metric spaces,

Technical Report TR/DCC-99-3, Dept. of Computer Science, Univ. of Chile (1999) To appear
in ACM Computing Surveys (1999).

7. M. T. Dickerson and D. Eppstein, Algorithms for proximity problems in higher dimensions,
Computational Geometry: Theory and Applications 5, p.277-291 (1996).

8. F. Ercolessi, A molecular dynamics primer, http://www.fisica.uniud.it/~ercolessi/md/md/,
Date accessed 01-07-2004.

9. C. F. Fischer, The hartree-fock method for atoms, John Wiley & Sons Inc, New York, 1977.
10. J. H. Freidman, J. L. Bentley and R. A. Finkel, An algorithm for finding best matches in

logarithmic expected time, ACM Transactions on Mathematical Software (TOMS) 3 (3),
p.209-226 (1977).

11. D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms to
applications, Academic Press, 1996.

12. V. Gaede and O. Günther, Multidimensional access methods, Source ACM Computing
Surveys (CSUR) archive (June 1998) 30 (2), p.170-231 (1998).

13. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of
Computational Physics (December 1987) 73 (2), p.325-348 (1987).

14. A. Guttman, R-trees: A dynamic index structure for spatial searching, In proceedings of the
ACM SIGMOD International Conference on Management of Data, p.47-57 (1984).

15. R. W. Hockney and J. W. Eastwood, Computer simulation using particles, Publisher Taylor &
Francis, Inc., Bristol, PA, USA, 1988.

16. V. Jain and B. Shneiderman, Data structures for dynamic queries: An analytical and
experimental evaluation, Proceedings of the workshop on Advanced visual interfaces, p.1-11
(1994).

17. D. V. Kalashnikov, S. Prabhakar and S. E. Hambrusch, Main memory evaluation of
monitoring queries over moving objects, Distributed and Parallel Databases archive (March
2004) 15 (2), p.117-135 (2004).

18. D. V. Kalashnikov, S. Prabhakar, S. E. Hambrusch and W. G. Aref, Efficient evaluation of
continuous range queries on moving objects, Proceedings of the 13th International Conference
on Database and Expert Systems Applications, p.731-740 (2002).

19. D. Konovalov, Tomsk group, http://www.it.jcu.edu.au/~dmitry/tomsk/, Date accessed 9/2004.
20. S. Meyers, Effective c++, Addison-Wesley, Indianapolis, 2003.
21. Microsoft, C++ language reference - data type ranges, http://msdn.microsoft.com/library/en-

us/vclang/html/_langref_data_type_ranges.asp, Date accessed 8/11/2004.
22. B. Moon, H. v. Jagadish, C. Faloutsos and J. H. Saltz, Analysis of the clustering properties of

the hilbert space-filling curve, IEEE Transactions on Knowledge and Data Engineering 13 (1),
p.124-141 (2001).

23. J. Nievergelt, H. Hinterberger and K. C. Sevcik, The grid file: An adaptable, symmetric
multikey file structure, ACM Transactions on Database Systems (TODS) 9 (1), p.38-71
(1984).

24. A. Noske, Molecular dynamics simulation and other self-spatial join - an engine layer and
performance testing platform, http://manning.it.jcu.edu.au/~jc130551/thesis/, Date accessed
26/11/2004.

25. A. Papadopoulos, P. Rigaux and M. Scholl, A performance evaluation of spatial join
processing strategies, Proceedings of the 6th International Symposium on Advances in Spatial
Databases, p.286-307 (1999).

http://www.fisica.uniud.it/~ercolessi/md/md/
http://www.it.jcu.edu.au/~dmitry/tomsk/
http://msdn.microsoft.com/library/en-us/vclang/html/_langref_data_type_ranges.asp
http://msdn.microsoft.com/library/en-us/vclang/html/_langref_data_type_ranges.asp
http://manning.it.jcu.edu.au/~jc130551/thesis/

72

26. S. Prabhakar, Y. Xia, D. V. V. Kalashnikov, W. G. G. Aref and S. E. E. Hambrusch, Query
indexing and velocity constrained indexing: Scalable techniques for continuous queries on
moving objects, IEEE Transactions on Computers archive 51 (10), p.1124-1140 (2002).

27. N. Roussopoulos, S. Kelley and F. Vincent, Nearest neighbor queries, Proceedings of ACM
Sigmod (May 1995) (1995).

28. H. Samet, The quadtree and related hierarchical data structures, ACM Computing Surveys
(CSUR) archive (June 1984) 16 (2), p.187-260 (1984).

29. H. Samet, The design and analysis of spatial data structures, Addison-Wesley Longman
Publishing Co., Inc, Boston, MA, USA, 1990.

30. B. Stroustrup, The c++ programming language (special edition), Pearson Education,
Indianapolis, 2000.

31. Y. Tao and D. Papadias, Spatial queries in dynamic environments, ACM Transactions on
Database Systems (TODS) 28 (2), p.101-139 (2003).

32. L. Verlet, Computer "experiments" on classical fluids. I. Thermodynamical properties of
lennard-jones molecules, Physical Review 159 (1968).

33. S. Wang, J. M. Hellerstein and I. Lipkind, Near-neighbor query performance in search trees,
(1998).

	Declaration
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Definitions
	Introduction
	Background and Motivation
	Thesis Objective
	Summary of Contribution
	Thesis Structure

	Background and Literature Review
	Introduction to Molecular Dynamics
	Interaction Model: Lennard-Jones Potential
	Periodic Boundary Condition
	N-body Solutions
	Spatial Data Structures: Fixed Grid
	Atom List
	Cell List
	Verlet Neighbours List
	Indexing Pair Potentials
	Improving Spatial Locality with Space-Filling Curves
	Spatial Data Structures for Skewed Data
	Summary

	Proposed Techniques to Improve Self-Spatial Joins
	Minimum Cell List
	Half Range Searches
	Early Elimination of Non-Neighbours
	Sub-grids and Cell List Template Guides
	Minimum Bounding Rectangles in Cells
	Selective Checking of Verlet Neighbours

	Implementation
	Simulation Testing Sequence
	Scientific Testing Process

	Experimental Results and Discussion
	Guide to Results
	Scalability of Fixed Grid
	Breakdown of Costs
	Minimum Cell List
	Loaded Cell List vs. Unloaded Cell List
	Atom List vs. Cell List
	Half Range Searches
	Early Elimination of Non-Neighbours
	Sub-grids and Cell List Template Guides
	Minimum Bounding Rectangles in Cells
	Improving Spatial Locality: Single Atom Object vs. Separate
	Improving Spatial Locality using Space-filling Curves
	Choosing Optimal Cells per Side
	Choosing Optimal Verlet Radius
	Selective Checking of Verlet Neighbours
	Choosing Cutoff Radius
	Choosing Timestep

	Conclusion
	Summary of Results
	Future Work

	Appendices
	Appendix A: Common C++ Data Types
	Appendix B: Performance of Various Operations on Chosen Plat
	Appendix C: Choice of Data-type: Double or Long
	Appendix D: Efficient Generation of Random Directions in Thr

	Bibliography

